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Abstract

Universal kernels, whose Reproducing Kernel Hilbert Space is dense in the space of
continuous functions are of great practical and theoretical interest. In this paper, we
introduce an explicit construction of universal kernels on compact metric spaces. We
also introduce a notion of approximate universality, and construct tractable kernels that
are approximately universal.
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1 Introduction

1.1 Kernels in Practice and Related Works
Kernels Methods at large are a ubiquitous tool in statistics, starting with Kernel Density
Estimation [Ros56; Par62] and Kernel Regression [Nad64; Wat64]. For an overview of the use
of kernel methods in statistics and probability, we refer to the monograph [BT11]. In Machine
Learning, the first uses of kernels hinged on the "kernel trick" [Aiz64; SSM98], which allows
high expressivity of models without the need of an explicit feature map into the underlying
infinite-dimensional space. A cornerstone model is the Support Vector Machine [CV95], whose
statistical properties have garnered extensive attention, see for example the monograph [CS08].
A useful tool is the Kernel Mean embedding (we refer to the review [Mua+17]) which maps
a measure µ to a point M(µ) in a Hilbert space of features, and can be used to compare
measures with the Maximum Mean Discrepancy defined as MMD(µ, ν) = ‖M(µ) −M(ν)‖H
which fostered numerous applications [Góm+09; Zha+12; Mua+12; FSG13; Gre+12; Dor+14;
Li+17]. Theoretical guarantees for the MMD depending on properties of the kernel have been
reviewed in [SFL11].

From a theoretical standpoint, Reproducing Kernel Hilbert Spaces (RKHS) introduced by
Aronszajn [Aro50] have been the object of several monographs [SS02; CS08; SS16]. Some
questions remain open, in particular constructing suitable kernels on non-euclidean metric
spaces is a challenging problem that is the subject of ongoing research. For compact metric
spaces, [CS10] show the existence of universal kernels (i.e. such that the associated RKHS is
dense in the space of continuous functions) when the space is continuously embedded into a
separable Hilbert space, and [SZ21] relate the notions of universality and strictly proper kernel
scores. On complete Riemannian manifolds, [Jay+15] observe (Theorem 6.2) that the natural
Gaussian kernel k(x, y) = exp(−s d(x, y)2) is indeed a kernel only in the very restricted case
where the manifold is isometric to Rd. On Hilbert and Banach spaces, [ZGD22] introduce
radial kernels and show universality-adjacent properties. Regarding universality, [MXZ06]
study conditions on the feature maps that ensure universality.

Our contribution first consists in an explicit construction of universal kernels on a compact
metric space (X , dX ), in some sense extending [CS10] whose construction is not explicit and
relied on the existence of an embedding. The constructed kernels use known kernels known as
Taylor and radial kernels, which are defined on compact subsets of separable Hilbert spaces.
Noticing that our kernels are not tractable in practice, we introduce a notion of approxi-
mate universality and construct other explicit kernels that are approximately universal and
tractable.

1.2 Elements of RKHS Theory
For a set X , a kernel k : X × X −→ R is a positive-definite symmetric function, which is to
say a function that verifies k(x, y) = k(y, x) and:

∀n ∈ N∗, ∀(x1, · · · , xn) ∈ X n, ∀a ∈ Rn,
n∑
i=1

n∑
j=1

aik(xi, xj)aj ≥ 0.

By the Moore-Aronszajn theorem [Aro50], there exists a unique Hilbert space (H, 〈·, ·〉H) of
functions X −→ R, such that H contains all basic functions k(·, x), and its inner product is
characterised by the "reproducing property"〈k(·, x), k(·, y)〉H = k(x, y). Denoting by Span the
Hilbertian completion of the linear span of a set, it follows that H = Span{k(·, x), x ∈ X}.
The space H is referred to as the Reproducing Kernel Hilbert Space (RKHS) associated to
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the kernel k. The reproducing property of the kernel implies that for any h ∈ H and x ∈ X ,
we have 〈h, k(·, x)〉H = h(x).

If k is continuous (w.r.t. a metric on X ), the RKHS H is contained in the space of continuous
functions from X to R, denoted C(X ). In this work, we will always consider continuous kernels.
Some continuous kernels have an additional property called universality:

Definition 1. A continuous kernel k on a compact metric space (X , dX ) is said to be universal
if the RKHS H is dense in (C(X ), ‖ · ‖∞), the space of continuous functions from X to R
equipped with the supremum norm. In other words, for any ε > 0 and f ∈ C(X ), there exists
h ∈ H such that ‖f − h‖∞ ≤ ε.

Another equivalent definition of kernels uses the notion of feature map / feature space pairs:
through these lens, a kernel is any map X 2 −→ R such that there exists a Hilbert space H0
and a map Φ0 : X −→ H0 such that Eq. (1) holds.

∀x, y ∈ X , k(x, y) = 〈Φ0(x),Φ0(y)〉H0 . (1)

The pair (Φ0, H0) is called a feature map / feature space pair (or simply feature pair) for k,
and any kernel can be written in this form ([CS08], Theorem 4.16). The associated RKHS is
then defined as:

H = {x 7−→ 〈h0,Φ0(x)〉H0 , h0 ∈ H0}. (2)
The RKHS H in Eq. (2) is unique ([CS08], Theorem 4.21), and equal to Span {k(·, x), x ∈ X}
as stated above. The canonical feature map is defined as Φ(x) = k(·, x), and the pair (Φ, H)
is called the canonical feature pair for k.

From the space viewpoint, and RKHS can equivalently be defined as a Hilbert space of func-
tions X −→ R in which the evaluation δx : h 7−→ h(x) is continuous for all x ∈ X , as is done in
[CS08], Section 4.2. The kernel is then defined as k(x, y) = 〈Lδx, Lδy〉H , where Lδx ∈ H is the
Riesz representation of δx ∈ H ′. In this paper, we stick to the (equivalent) kernel viewpoint.

For a compact metric space (E, dE), we will denote by diam(E) its diameter, which is defined
by diam(E) := max(x,y)∈E2 dE(x, y). Throughout this work, X will be assumed to be a compact
metric space, and we denote DX := diam(X ).

The first type of universal kernels of interest in this work are Taylor kernels (see [CS08] Lemma
4.8 and Corollary 4.57 for their study on compact subsets of Rd).

Definition 2. Let W ⊂ `2 be a non-empty compact set and D2
W := diam(W )2 > 0 the square

of its diameter. Take a sequence (an)n∈N ∈ (0,+∞)N such that K(t) := ∑
n ant

n converges
absolutely on [−D2

W , D
2
W ]. The Taylor kernel associated to K is the map

kW :=
{

W 2 −→ R
(u, v) 7−→ K(〈u, v〉`2) . (3)

Taylor kernels are shown to be universal on compact subsets of `2 in [CS10] Theorem 2.1. The
second type of universal kernels we will consider are radial kernels1.

Definition 3. Let W ⊂ `2 be a non-empty compact set and µ ∈ M([0,+∞)) a finite Borel
measure on [0,+∞) with supp(µ) 6= {0}. The associated radial function K and the radial
kernel kW are defined as follows:

K :=
{

R+ −→ R
t 7−→

´ +∞
0 e−stdµ(s) , kW :=

{
W 2 −→ R

(u, v) 7−→ K(‖u− v‖2
`2) . (4)

1Radial kernels can be defined (and shown to be universal) on separable Hilbert spaces and more [ZGD22],
but we will use compactness for other reasons, and thus restrict to compact subsets of `2 for our purposes.
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The universality of radial kernels on W is a consequence of [ZGD22] Proposition 5.2 combined
with [SZ21] Theorem 3.13. Note that the well-known Gaussian (or RBF) kernel exp(−‖ · − ·
‖2
`2/(2σ2)) is a particular radial kernel with µ := δ1/(2σ2).

1.3 Paper Outline and Contributions
The objective of this paper is to construct kernels k on a compact metric space (X , dX ) that
are universal (see Definition 1). We also introduce a notion of approximate universality (Def-
inition 6), and introduce other (tractable) explicit kernels k̂ and kt that verify this property.

Construction of universal kernels in Section 2 To construct universal kernels on X ,
we first introduce an explicit continuous injection ϕ : X −→ `2 in Proposition 4. Given any
universal kernel kV on V := ϕ(X ) ⊂ `2 we show in Theorem 5 that k(x, y) := kV (ϕ(x), ϕ(y)),
is universal on X .

The construction of ϕ in Section 2 is based on a countable basis of X , and the associated
kernel requires inner products in `2. In Section 3, we explain how we can use instead a
(finite) η-covering of X , yielding a finite-dimensional approximation of the embedding ϕ, with
theoretical guarantees. We also investigate the natural idea of truncating the sequence ϕ(x).

Approximate universal kernels in Section 3 We introduce a notion of approximate
universal kernels on X , which are kernels k̂ of RKHS Ĥ such that for all ε > 0 and f ∈ C(X ),
there exists ĥ ∈ Ĥ such that ‖f − ĥ‖∞ ≤ ε+ ρ(f), where ρ(f) > 0 is an error term depending
on k̂ and f . We construct a simpler map ϕ̂ : X −→ RJ as a surrogate for the embedding
ϕ : X :−→ `2, and embed RJ into `2 appropriately to compare ϕ and B ◦ ϕ̂. This allows us to
introduce the kernel k̂(x, y) := kW (B ◦ ϕ̂(x), B ◦ ϕ̂(y)) for a compact setW ⊃ ϕ(X )∪B(ϕ̂(X ))
and a Taylor or radial kernel kW on W . In Corollary 10, we provide a tractable (as in
numerically computable) expression for k̂. Finally, we show in Theorem 14 that k̂ is an
approximate universal kernel on X with an explicit error term ρ depending on discretisation
parameters and the "complexity" of the function f . In Section 3.3, we introduce a simple
truncation of ϕ which leads to another approximate universal kernel k̂t on X .

2 Explicit Universal Taylor and Radial Kernels on a
Compact Metric Space

2.1 Injection of X into `2

Let (X , dX ) be a non-empty compact metric space, and let DX > 0 be its diameter. We take a
basis of X , i.e. a countable sequence (xn)n∈N such that for any x ∈ X and ε > 0, there exists
n ∈ N such that dX (x, xn) ≤ ε. Using a basis, we construct an implicit continuous injection ϕ
from X into `2 (Proposition 4), then use universal kernels on V := ϕ(X ) to build a universal
kernel k on X in Theorem 5. In Fig. 1, we illustrate the injection.
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Figure 1: Given a basis (xn)n∈N of X , the mapping ϕ : X −→ `2 maps a point x ∈ X to the
sequence of its distances to the points of the basis.

Proposition 4. Let (xn) a basis of X and q > 1. The map

ϕ :=


X −→ `2

x 7−→
(
cϕdX (x, xn)

qn

)
n∈N

, cϕ :=
√
q2 − 1
q

is 1-Lipschitz and injective.

Proof. The fact that ϕ(X ) ⊂ `2 comes from the compactness of X . Take now x, y ∈ X :

‖ϕ(x)− ϕ(y)‖2
`2 = c2

ϕ

+∞∑
n=0

|dX (x, xn)− dX (y, xn)|2

q2n ≤ c2
ϕ

+∞∑
n=0

dX (x, y)2

q2n =
c2
ϕq

2

q2 − 1dX (x, y)2,

showing 1-Lipschitzness. As for injectivity, consider x 6= y ∈ X 2 and ε := dX (x, y)/3 > 0.
Since (xn) is a basis of X , there exists n ∈ N such that dX (x, xn) ≤ ε. The triangle inequality
then shows

dX (y, xn) ≥ dX (y, x)︸ ︷︷ ︸
=3ε

− dX (x, xn)︸ ︷︷ ︸
∈[0,ε]

≥ 2ε,

and thus | dX (y, xn)︸ ︷︷ ︸
≥2ε

− dX (x, xn)︸ ︷︷ ︸
∈[0,ε]

| ≥ ε, allowing us to conclude

‖ϕ(y)− ϕ(x)‖2
`2 ≥ c2

ϕ

|dX (y, xn)− dX (x, xn)|2

q2n ≥ c2
ϕ

ε2

q2n > 0.
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2.2 Universal Kernels on X
We can now build universal kernels k : X 2 −→ R using ϕ and a universal kernel kV : V 2 −→ R
(for example Taylor or radial) on V := ϕ(X ). The technique follows closely that of [CS10]
Theorem 2.2. Thanks to the 1-Lipschitzness of ϕ, we have diam(ϕ(X )) ≤ diam(X ) =: DX .

Theorem 5. Let V := ϕ(X ) ⊂ `2 and kV : V 2 −→ R be a universal kernel on V (e.g. Taylor
as in Definition 2 or radial as in Definition 3). The kernel

k :=
{
X 2 −→ R

(x, y) 7−→ kV (ϕ(x), ϕ(y))

is universal on X .

Proof. Since X is a compact metric space and `2 is Hausdorff, the co-restriction of ϕ to V
denoted ϕV : X −→ V is a homeomorphism. Let HV be the unique RKHS associated to the
kernel kV on V , and ΦV : V 7−→ HV its canonical feature map (i.e. ΦV (u) = kV (·, u)). Since
k(x, y) = 〈ΦV ◦ϕV (x),ΦV ◦ϕV (y)〉HV , the map ΦV ◦ϕV and the space HV are a feature pair for
k. In the following, given a set F of functions and g a function, we write F ◦g := {f◦g, f ∈ F}.
By uniqueness ([CS08] Theorem 4.21), it follows that the RKHS H associated to k can be
written

H = {x 7−→ 〈hV ,ΦV ◦ ϕV (x)〉HV , hV ∈ HV } = HV ◦ ϕV ,

where the second equality comes from the reproducing property: for any x ∈ X and hV ∈ HV ,
we have hV ◦ ϕV (x) = 〈hV ,ΦV ◦ ϕV (x)〉HV . Since ϕV is a homeomorphism, we also have
C(X ) = C(V ) ◦ ϕV . Now for ε > 0 and f ∈ C(X ), take fV := f ◦ ϕ−1

V ∈ C(V ). By universality
of kV , there exists hV ∈ HV such that ‖fV − hV ‖∞ ≤ ε. Taking h := hV ◦ ϕV yields
‖f − h‖∞ ≤ ε, and as a result k is universal.

Note that in Section 3, we will consider instead k(x, y) = kW (ϕ(x), ϕ(y)), where kW is universal
on a compact set W containing V := ϕ(X ). By [CS08] Lemma 4.55 item iii), kW restricted to
V 2 remains universal, and therefore the result still holds.

A strictly convex functional on P(X ) We consider the set P(X ) of probability measures
on X . As a universal kernel, k is also characteristic (see [SFL11] and use the compactness of
X ), which is to say that the map

M :=
{
P(X ) −→ H
µ 7−→

´
X k(·, x)dµ(x) ,

known as the kernel mean embedding [Sri+10], is injective. One can show that the map

F :=
{
P(X ) −→ R+
µ 7−→ ‖M(µ)‖2

H

is continuous with respect to the weak convergence of measures (apply [HC11] Theorem A.1
using that x 7−→ k(·, x) is continuous and bounded). Furthermore, by linearity ofM and strict
convexity of ‖ · ‖2

H , the function F is strictly convex. Note that the fact that M is injective is
required to prove strict convexity.
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3 Approximate Universal Kernels
In practice, the function ϕ introduced in Proposition 4 is not tractable, limiting the use of the
kernels proposed in Theorem 5. We will now introduce a family of tractable kernels which are
approximately universal on X . Throughout this section, the kernels kW on a compact subset
W of `2 that we will consider are Taylor or radial (see Definitions 2 and 3). Our objective
is to construct another kernel k̂ with a simpler explicit mapping ϕ̂ : X −→ RJ , yielding an
RKHS Ĥ which we will show to be approximately universal in the sense of Definition 6.

Definition 6. Let k̂ : X 2 −→ R a kernel on X of RKHS Ĥ and ρ : C(X ) −→ R+ an error
function. We say that k̂ is an approximate universal kernel on X if for all ε > 0 and f ∈ C(X ),
there exists ĥ ∈ Ĥ such that ‖f − ĥ‖∞ ≤ ε+ ρ(f).

3.1 Constructing a Smaller RKHS Ĥ

In this section, we provide a principled method to "sub-sample" the sequence ϕ(x) which ap-
proximates the distance sequence (dX (x, xn))n∈N by a finite number of distances (dX (x, yj))j∈J1,JK

for a well-chosen family (yj) ∈ X J . We illustrate this discretisation concept in Fig. 2.

Figure 2: Discretisation of the space X into a cover of J balls of radius η > 0 centred at a
(yj)j∈J1,JK.

Instead of a basis of X , we will now fix η ∈ (0, DX ] and consider (yj)j∈J1,JK a family of distinct
points of X such that the family of balls BdX (yj, η) covers X . In Eq. (5), we introduce a map
ϕ̂ : X −→ RJ in the spirit of ϕ defined in Proposition 4, which we visualise in Fig. 3.

ϕ̂ :=


X −→ RJ

x 7−→
(
dX (x, yj)√

J

)
j∈J1,JK

. (5)
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Figure 3: The mapping ϕ̂ : X −→ RJ maps a point x ∈ X to the vector of distances between
x and the centres yj of the covering.

It is immediate to verify that ϕ̂ : (X , dX ) −→ (RJ , ‖ · ‖2) is 1-Lipschitz, thanks to the J−1/2

normalisation. In Proposition 9, we show how to embed RJ ⊃ ϕ̂(X ) into `2 with a mapping
B, which will allow us to compare the RKHS induced by ϕ̂ and a particular ϕ : X −→ `2. To
construct B, we first begin with a geometric series separation lemma, which will be convenient
to deal with the factor 1

qn
in ϕ.

Lemma 7. Let J ≥ 2, q ∈ (1, 1 + 1
J−1) and coefficients (λ1, · · · , λJ) ∈ (0, 1)J such that∑

j λj = 1, there exists α : N −→ J1, JK with for all j ∈ J1, JK, α−1({j}) infinite such that:

∀j ∈ J1, JK,
∑

n∈α−1({j})

1
qn

= λj
q

q − 1. (6)

Proof. Set S := q
q−1 . We will construct a sequence (α(N))N∈N by induction over N , verifying

the property

PN : ∀j ∈ J1, JK,
∑

n∈J1,NK:α(n)=j

1
qn
< λjS.

Initialisation: set α(0) the first j ∈ J1, JK such that 1 < λjS. Note that such a j exists,
otherwise summing over j ∈ J1, JK yields

J ≥
q

q − 1 >
1 + 1

J−1
1 + 1

J−1 − 1 = J,

which is a contradiction. Having chosen j ∈ J1, JK (e.g. minimal) such that 1 ≤ λjS, we have
defined α(0) := j verifying P0.

Induction step: let N ∈ N, suppose PN true. We show that there exists j ∈ J1, JK such that

∑
n∈J1,NK:α(n)=j

1
qn

+
1

qN+1 < λjS (7)
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by contradiction. If that were not the case, we would have by summing Eq. (7) over j ∈ J1, JK:

N+1∑
n=0

1
qn

+
J − 1
qN+1 ≥ S,

which by computation is equivalent to q ≥ 1 + 1
J−1 , obtaining a contradiction. Selecting

j ∈ J1, JK such that Eq. (7) holds, we can set α(N + 1) := j which satisfies PN+1.

Now that α : N −→ J1, JK verifying (PN) is constructed, we introduce the convergent series

∀j ∈ J1, JK, ∀N ∈ N, S(j)
N :=

∑
n∈J1,NK:α(n)=j

1
qn
, S(j)
∞ := lim

N−→+∞
S

(j)
N .

Thanks to (PN) have for all j ∈ J1, JK taking the limit yields S(j)
∞ ≤ λjS, and summing over

j ∈ J1, JK gives ∑j S
(j)
∞ = S, hence necessarily for all j ∈ J1, JK, S(j)

∞ = λjS.

Finally, observing the strict inequality in PN at each N ∈ N shows that α−1({j}) has to be
infinite, concluding the proof.

We now turn to constructing an embedding B : RJ −→ `2, which will allow us to compare ϕ̂
and ϕ. An important property of B will be the correspondence between the inner products in
RJ and `2 (i.e. B will be an isometry). The construction of this embedding revolves around the
construction of an adapted basis (xn)n∈N of X which is balanced with respect to the covering
by the balls B(yj, η), as illustrated in Fig. 4.

Figure 4: The basis (xn)n∈N is such that there equally as many (xn) in each region Xj of
points closest to yj. In the figure, we observe a zoom on the region X4, where the example
point xn is closest to y4. In mathematical terms, we write this property as β(n) = yj, and in
Proposition 8 we will construct (xn) such that the sum ∑

n q
−2n is split evenly between the

sets β−1({j}).

Proposition 8. Take q ∈ (1,
√

1 + 1
J−1). There exists a basis (xn)n∈N of X and a mapping β :

N −→ J1, JK with infinite pre-images which verifies ∀n ∈ N, dX (xn, yβ(n)) = minj dX(xn, yj),

9
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and with the following property:

∀j ∈ J1, JK,
∑

n∈β−1({j})

1
q2n =

1
J

q2

q2 − 1. (8)

Proof. Consider for j ∈ J1, JK the set Xj := {x ∈ X : argminm dX (x, ym) = j} (with
disambiguation by taking the smallest minimiser if multiple exist). By definition, the sets Xj
are disjoint and cover X . Since (X , dX ) is a compact metric space, each subset Xj is separable,
allowing us to choose a basis (z(j)

n )n∈N of Xj for each j ∈ J1, JK. By Lemma 7, we can choose
β : N −→ J1, JK with infinite pre-images which verifies Eq. (6). Since for each j ∈ J1, JK, the
set β−1({j}) ⊂ N is infinite, we can choose ωj : β−1({j}) −→ N a bijection. We can now
define ∀n ∈ N, xn := z

(β(n))
ωβ(n)(n), which is a basis of X since ∪jXj = X and

{xn}n∈N =
⋃
j

{z(j)
ωj(m)}m∈β−1({j}) =

⋃
j

{z(j)
n }n∈N,

by construction. Furthermore, by definition, we have ∀n ∈ N, argminj dX (xn, yj) = β(n),
which shows that the mapping β satisfies the desired properties.

Using the adapted basis from Proposition 8, we can finally construct an isometryB : RJ −→ `2:

Proposition 9. Take a basis (xn) of X and β : N −→ J1, JK as in Proposition 8. The mapping
B defined below is an isometry:

B :=


RJ −→ `2

(uj)Jj=1 7−→
(
cB
uβ(n)

qn

)
n∈N

, cB :=

√
J(q2 − 1)

q
. (9)

Proof. The mapping B is clearly linear, and for u, v ∈ RJ we compute using Eq. (8):

〈B(u), B(v)〉`2 =
+∞∑
n=0

c2
B

q2nuβ(n)vβ(n) = c2
B

J∑
j=1

ujvj
∑

n∈β−1({j})

1
q2n = c2

B

1
J

q2

q2 − 1 〈u, v〉RJ = 〈u, v〉RJ ,

which shows that B is an isometry.

In the following, we draw a correspondence between a RKHS Ĥ built with ϕ̂ from Eq. (5) and
another RKHS H built using ϕ from Proposition 4. Let U := ϕ̂(X ), which is a compact subset
of RJ , then let V̂ := B(U), it is a compact subset of `2. Consider the injection ϕ introduced in
Proposition 4 with basis (xn) and scale q as in Proposition 9. Define V := ϕ(X ), W := V ∪ V̂ ,
which are also compact subsets of `2. We now summarise our objects in the following diagram:

X V ⊂ W ⊂ `2

U ⊂ RJ V̂ ⊂ W ⊂ `2

ϕ

ϕ̂

B

(10)

We fix a kernel kW : W 2 −→ R which is of Taylor type or radial (see Definitions 2 and 3) and
thus in particular universal on W , and introduce its canonical feature map:

ΦW :=
{
W −→ HW

u 7−→ kW (·, u) , (11)

10
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where HW = Span {kW (·, u), u ∈ W} ⊂ C(W ) is the unique RKHS associated to the kernel
kW ([CS08] Theorem 4.21). Consider the kernels k, k̂ on X defined respectively as:

k :=
{
X 2 −→ R

(x, y) 7−→ kW (ϕ(x), ϕ(y)) , k̂ :=
{
X 2 −→ R

(x, y) 7−→ kW (B ◦ ϕ̂(x), B ◦ ϕ̂(y)) . (12)

By definition of the feature pair (HW ,ΦW ) for kW , we observe that for x, y ∈ X :

k(x, y) = 〈ΦW ◦ ϕ(x),ΦW ◦ ϕ(y)〉HW , k̂(x, y) = 〈ΦW ◦B ◦ ϕ̂(x),ΦW ◦B ◦ ϕ̂(y)〉HW . (13)

The RKHS spaces H, Ĥ associated to k, k̂ are both subspaces of C(X ) and can be written with
the following respective feature pairs (HW ,Φ), (HW , Φ̂) (use Eq. (13) with [CS08] Theorem
4.21):

H = {x 7−→ 〈hW ,ΦW ◦ ϕ(x)〉HW , hW ∈ HW} , Φ :=
{
X −→ HW

x 7−→ ΦW ◦ ϕ(x) (14)

Ĥ = {x 7−→ 〈hW ,ΦW ◦B ◦ ϕ̂(x)〉HW , hW ∈ HW} , Φ̂ :=
{
X −→ HW

x 7−→ ΦW ◦B ◦ ϕ̂(x) . (15)

Notice that the feature space HW is shared. To finish the diagram, we introduce the "feature-
to-map" functionals:

Ψ :=
{
HW −→ H
hW 7−→ x 7→ 〈hW ,Φ(x)〉HW

, Ψ̂ :=
{
HW −→ Ĥ

hW 7−→ x 7→ 〈hW , Φ̂(x)〉HW
. (16)

Extending the diagram in Eq. (10), we obtain:

V ⊂ W ⊂ `2 H

X HW

U ⊂ RJ V̂ ⊂ W ⊂ `2 Ĥ

ΦWϕ

ϕ̂

Φ

Φ̂

Ψ

Ψ̂

B

ΦW

(17)

Using the inner product correspondence induced by the isometry B from Proposition 9, a
tractable formula for k̂ is obtained immediately for Taylor and radial kernels.

Corollary 10. The kernel k̂ on X is given by, for ∀x, y ∈ X :

• if kW is a Taylor kernel (Definition 2):

k̂(x, y) = K(〈ϕ̂(x), ϕ̂(y)〉RJ ) =
+∞∑
n=0

an

 1
J

J∑
j=1

dX (x, yj)dX (y, yj)
n ; (18)

11
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• if kW is a radial kernel (Definition 3):

k̂(x, y) = K(‖ϕ̂(x)− ϕ̂(y)‖2
RJ ) =

ˆ +∞

0
exp

− s
J

J∑
j=1

(dX (x, yj)− dX (y, yj))2

 dµ(s).

(19)

Proof. Let x, y ∈ X , we remind that from Eq. (12) that k̂(x, y) := kW (B ◦ ϕ̂(x), B ◦ ϕ̂(y)).
Now by Proposition 9, B is an isometry, yielding:

〈B ◦ ϕ̂(x), B ◦ ϕ̂(y)〉`2 = 〈ϕ̂(x), ϕ̂(y)〉RJ ; ‖B ◦ ϕ̂(x)−B ◦ ϕ̂(y)‖2
`2 = ‖ϕ̂(x)− ϕ̂(y)‖2

RJ .

Eqs. (18) and (19) are then obtained by replacing kW and K by their definitions in the Taylor
and radial cases.

We refer to the expressions in Eqs. (18) and (19) as "tractable" since they can be computed
explicitly on a computer or approximated efficiently to numerical precision (note that the
measure µ in the radial kernel can be discrete with finite support).

3.2 Showing that Ĥ is Approximately Universal

In this section, we show that the RKHS Ĥ introduced in Section 3.1 is approximately universal
on X . We use the notation and objects introduced in Section 3.1 extensively. The first
approximation result we will show concerns a comparison in `2 between ϕ(x) and B ◦ ϕ̂(x):

Proposition 11. For x ∈ X , we have ‖ϕ(x)− B ◦ ϕ̂(x)‖`2 ≤ η. The diameter of W verifies
DW := diam(W ) ≤ DX .

Proof. Let n ∈ N, we look at the terms of the sequences ϕ(x), B ◦ ϕ̂(x) ∈ W ⊂ `2:

|[ϕ(x)]n − [B ◦ ϕ̂(x)]n| =
∣∣∣∣∣cϕdX (x, xn)

qn
−
cBdX (x, yβ(n))√

Jqn

∣∣∣∣∣ ≤ 1
qn
cϕdX (xn, yβ(n)).

By construction of the covering (BdX (yj, η))j and of β (see Proposition 8), dX (xn, yβ(n)) ≤ η.
Summing the squares over n ∈ N and replacing cϕ with its definition yields:

‖ϕ(x)−B ◦ ϕ̂(x)‖2
`2 ≤ η2

+∞∑
n=0

c2
ϕ

q2n = η2.

For the diameter of W := ϕ(X ) ∪ B ◦ ϕ̂(X ), we have by 1-Lipschitzness of ϕ, ϕ̂ and B:
diam(ϕ(X )) ≤ DX and diam(B ◦ ϕ̂(X )) ≤ DX . Using the inequality in the above display and
the fact that η ≤ DX , we conclude:

DW = max(diam(ϕ(X )), sup
x∈X
‖ϕ(x)−B ◦ ϕ̂(x)‖`2) = DX .

Using regularity properties of Taylor and radial kernels, we will show that the kernel k̂ is
approximately universal on X by relating it to k which is universal by Theorem 5. First, we
see in Lemma 12 that the canonical feature map ΦW is Hölder-continuous for Taylor kernels,
and Lipschitz for radial kernels. We introduce the radius of W : RW := maxw∈W ‖w‖`2 . Using
the definition of W and of ϕ, ϕ̂ and B with their well-chosen normalisations, it is easy to see
that RW ≤ DX .

Lemma 12. The feature map ΦW : (W, ‖ · ‖`2) −→ (HW , ‖ · ‖HW ) has the following regularity:

12
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• If kW is a Taylor kernel, then ΦW is 1
2-Hölder continuous:

∀u, v ∈ W, ‖ΦW (u)− ΦW (v)‖HW ≤
√

2DXCK′‖u− v‖
1
2
`2 ,

where CK′ := maxt∈[−D2
X ,D

2
X ] |K ′(t)|.

• If kW is a radial kernel, then ΦW is
√

2CK′-Lipschitz:

∀u, v ∈ W, ‖ΦW (u)− ΦW (v)‖HW ≤
√

2CK′‖u− v‖`2 ,

where CK′ := maxt∈[0,D2
X ] |K ′(t)|.

Proof. First, we remind that by Proposition 11, we have diam(W ) ≤ DX . For the proof, we
take inspiration from [Fie23] Section 4.2. Using the reproducing property, we begin computa-
tions for both kernel types, letting u, v ∈ W :

‖ΦW (u)− ΦW (v)‖2
HW

= kW (u, u)− 2kW (u, v) + kW (v, v)
≤ |kW (u, u)− kW (u, v)|+ |kW (v, v)− kW (u, v)|.

For Taylor kernels, we use the fact that K is CK′-Lipschitz on [−D2
X , D

2
X ] and the Cauchy-

Schwarz inequality for 〈·, ·〉`2 :

‖ΦW (u)− ΦW (v)‖2
HW
≤ CK′ (|〈u, u〉`2 − 〈u, v〉`2 |+ |〈v, v〉`2 − 〈u, v〉`2 |)
≤ CK′(‖u‖`2 + ‖v‖`2)‖u− v‖`2
≤ 2RWCK′‖u− v‖`2 ,

and we conclude using RW ≤ DX . For radial kernels, we use the fact that K is CK′-Lipschitz
on [0, D2

W ] (we remind that K is non-increasing on [0,+∞)):

‖ΦW (u)− ΦW (v)‖2
HW

= 2(K(0)−K(‖u− v‖2
`2)) ≤ 2CK′‖u− v‖2

`2 .

We now use Lemma 12 to approximate any h ∈ H with a ĥ ∈ Ĥ with a certain error, which
we approach by comparing the feature-to-map functionals Ψ and Ψ̂ from Eqs. (14) and (15).

Proposition 13. For h ∈ H, take hW ∈ HW such that h = x 7−→ 〈hW ,Φ(x)〉HW = Ψ(hW ).
Then let ĥ := x 7−→ 〈hW , Φ̂(x)〉HW = Ψ̂(hW ). Denoting ‖ · ‖∞ the supremum norm on X , we
have:

‖h− ĥ‖∞ ≤ ρ0‖hW‖HW , (20)

where ρ0 = η
1
2
√

2DXCK′ for a Taylor kernel and ρ0 = η
√

2CK′ for a radial kernel..

Proof. First, we use the regularity of ΦW from Lemma 12: we have for x ∈ X,

|h(x)− ĥ(x)| = 〈hW ,Φ(x)− Φ̂(x)〉HW ≤ ‖hW‖HW ‖Φ(x)− Φ̂(x)‖HW
= ‖hW‖HW ‖ΦW ◦ ϕ(x)− ΦW ◦B ◦ ϕ̂(x)‖HW
≤ c̃‖hW‖HW ‖ϕ(x)−B ◦ ϕ̂(x)‖s`2 ,

where (c̃, s) = (
√

2DXCK′ , 1
2) for a Taylor kernel and (c̃, s) = (

√
2CK′ , 1) for a radial kernel.

Combining with Proposition 11, we obtain Eq. (20).

Using the universality of the kernel k (thanks to Theorem 5), we can frame the result of
Proposition 13 as an approximate universality property of k̂. Again, the approximation error
functions depend on the type of kernel kW .

13
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Theorem 14. Let ε > 0 and f ∈ C(X ), the element h[ε, f ] ∈ H defined by

h[ε, f ] := argmin
h∈H:‖h−f‖∞≤ε

‖h‖2
H (21)

is well-defined, and there exists ĥ ∈ Ĥ such that:

‖f − ĥ‖∞ ≤ ε+ ρ0‖h[ε, f ]‖H , (22)

where ρ0 = η
1
2
√

2DXCK′ for a Taylor kernel and ρ0 = η
√

2CK′ for a radial kernel..

Proof. First, we introduce:

hW [ε, f ] := argmin
hW∈HW :‖Ψ(hW )−f‖∞≤ε

‖hW‖2
HW

We show that hW [ε, f ] and h[ε, f ] are well-defined. The triangle inequality ensures that the
sets BHW := {hW ∈ HW : ‖Ψ(hW )−f‖∞ ≤ ε} and BH := {h ∈ H : ‖h−f‖∞ ≤ ε} are convex.
We now show the continuity of Ψ as a mapping (HW , ‖ · ‖HW ) −→ (C(X ), ‖ · ‖∞). First, the
continuity of Ψ : (HW , ‖ · ‖HW ) −→ (H, ‖ · ‖H) is a consequence of [CS08] Theorem 4.21. Next,
by [CS08] Lemma 4.23, since the kernel kW is bounded on W (we remind that W is a compact
subset of `2), the inclusion ι : (HW , ‖ · ‖HW ) −→ (C(W ), ‖ · ‖∞) is continuous. We obtain the
desired continuity by composition, showing that BHW is closed in HW . By continuity of ι, we
also obtain the closedness of BH in H. Finally, the sets BHW and BH are non-empty since
H = Ψ(HW ) is dense in (C(X), ‖ · ‖∞).

We conclude that BHW , resp. BH is a non-empty closed convex set in the Hilbert space
(HW , ‖ · ‖HW ), resp. (H, ‖ · ‖H), and the Hilbert projection theorem (or directly Theorem 4.10
in [Rud87]) ensures that hW [ε, f ], resp. h[ε, f ] is uniquely defined.

Now, we show that ‖h[ε, f ]‖H = ‖hW [ε, f ]‖HW . By [CS08] Theorem 4.21, we have for all
h ∈ H:

‖h‖H = inf{‖hW‖HW , h = Ψ(hW )}.
By the same argument as before (using Theorem 4.10 in [Rud87]), we show that the infimum is
attained. The equality between norms is then straightforward by separating both inequalities
and using H = Ψ(HW ).

To obtain Eq. (22), we take h := Ψ(hW [ε, f ]) in Eq. (20) and ĥ := Ψ̂(hW [ε, f ]) ∈ Ĥ, and apply
the triangle inequality for ‖ · ‖∞, using ‖h− f‖∞ ≤ ε and ‖h[ε, f ]‖H = ‖hW [ε, f ]‖HW .

The approximation result in Eq. (22) shows that k̂ is ρ-approximately universal (Definition 6)
for ρ(f) := ρ0‖h[ε, f ]‖H . In the case where X is of dimension d (or has intrinsic dimension
d), the number of covering balls scales as J = O(η−d), which does not impact the approxima-
tion rate, as is commonly the case in kernel methods which do not suffer from the curse of
dimensionality (see for example [Gre+12] Section 4.1). However, as is typically the case for
discretisation methods, the rate J = O(η−d) is computationally prohibitive for small discreti-
sation step η in high dimension d.

From a functional standpoint, a larger oscillation (a large value for CK′ = maxt∈[−D2
X ,D

2
X ] |K ′(t)|

e.g. for the Taylor case), of the function K worsens the error, which could be understood as
excessive locality or over-fitting. Finally, the error term ρ(f) is relative in the sense that it
depends on ‖h[ε, f ]‖H , which is the smallest possible norm of an ε-approximation of f within
H, and can be seen as a measure of complexity of f (in loose terms). This term depends on
q, and while the exact dependence is unclear, we expect it to grow as q increases.

14
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3.3 An Approximate Universal Truncated Kernel
In this section, we consider another approximate universal kernel which is obtained by trun-
cation of ϕ. Unless stated otherwise, we differ from the objects introduced in Section 3.1, and
follow very similar steps.

A natural idea is to simply consider a truncation of the mapping ϕ from Proposition 4: fixing
a basis (yj)j∈N of X , a discretisation size J ≥ 2 and scale q > 1, consider the mapping:

ϕt :=


X −→ RJ

x 7−→
(
cϕdX (x, yj)

qj

)
j∈J0,J−1K

.

Straightforward computation shows that ϕt : (X , dX ) −→ (`2, ‖ · ‖`2) is
√

1− q−2J -Lipschitz.
We introduce the "padding" isometry:

Bt :=
{

RJ −→ `2

(uj)Jj=1 7−→ (u0, · · · , uJ−1, 0, · · · )
,

Similarly to Section 3.2, we take V := ϕ(X ), Ut := ϕt(X ) and Vt := Bt(Ut), allowing us to
introduce the compact set W := V ∪ Vt ⊂ `2 (we use the same notation as in Section 3.1 to
alleviate notation). Take kW a Taylor or radial kernel on W , and introduce the kernel:

kt :=
{
X 2 −→ R

(x, y) 7−→ kW (Bt ◦ ϕt(x), Bt ◦ ϕt(y)) .

We continue with the feature pair (HW ,Φt) for the RKHS Ht associated to kt, where:

Φt :=
{
X −→ HW

x 7−→ ΦW ◦Bt ◦ ϕt(x) .

As in Eq. (16) we introduce the "feature-to-map" functionals to close the diagram:

V ⊂ W ⊂ `2 H

X HW

Ut ⊂ RJ Vt ⊂ W ⊂ `2 Ht

ΦWϕ

ϕt

Φ

Φt

Ψ

Ψt

Bt

ΦW

The computation in the proof Corollary 10 stands, but the coefficients in the expression of ϕt
lead to a different expression for kt, which is a truncated version of k: if kW is a Taylor kernel,
we have:

kt(x, y) = K (〈ϕt(x), ϕt(y)〉RJ ) =
+∞∑
n=0

an

J−1∑
j=0

c2
ϕdX (x, yj)dX (y, yj)

q2j

n ,
15
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and likewise for radial kernels:

kt(x, y) = K
(
‖ϕt(x)− ϕt(y)‖2

RJ
)

=
ˆ +∞

0
exp

−s J−1∑
j=0

c2
ϕ(dX (x, yj)− dX (y, yj))2

q2j

 dµ(s).

We now adapt Proposition 11 to kt:

Proposition 15. For x ∈ X , we have ‖ϕ(x)−Bt ◦ϕt(x)‖`2 ≤ DX
qJ
. The diameter of W verifies

DW ≤ DX .

Proof. For n ∈ J0, J − 1K, by construction [ϕ(x)]n = [Bt ◦ ϕt(x)]n. For n ≥ J , we have:

|[ϕ(x)]n − [Bt ◦ ϕt(x)]n| =
cϕdX (x, yn)

qn
,

and by bounding the distance term by DX , and summing the squares, we obtain:

‖ϕ(x)−Bt ◦ ϕt(x)‖2
`2 ≤

+∞∑
n=J

c2
ϕD

2
X

q2n =
c2
ϕD

2
X q

2

q2J(q2 − 1) =
D2
X

q2J .

As for the result on DW , it follows from 1-Lipschitzness as done in Proposition 11.

As in Section 3.2, it is easy to verify that RW := maxw∈W ‖w‖`2 ≤ DX . Following the same
steps as in Theorem 14, we show a similar result for kt, replacing η with DX q−J :

Theorem 16. Let ε > 0 and f ∈ C(X ), there exists ht ∈ Ht such that:

‖f − ht‖∞ ≤ ε+ ρt‖h[ε, f ]‖H , (23)

where ρt = q−J/2DX
√

2CK′ for a Taylor kernel and ρt = q−JDX
√

2CK′ for a radial kernel,
with the constants CK′ as in Lemma 12.

To compare with the rate from Theorem 14, we see that the term η is replaced by DX q−J .
While q−J becomes exponentially smaller as q increases, we suspect the term ‖h[ε, f ]‖H to
grow quickly as q increases, which would favour the kernel k̂ from Section 3.1.

Acknowledgements
We thank Joan Glaunès for carefully proofreading this work and for his valuable insight.

This research was funded in part by the Agence nationale de la recherche (ANR), Grant ANR-
23-CE40-0017 and by the France 2030 program, with the reference ANR-23-PEIA-0004.

References
[Aiz64] A Aizerman. “Theoretical foundations of the potential function method in pattern

recognition learning”. In: Automation and remote control 25 (1964), pp. 821–837.
[Aro50] Nachman Aronszajn. “Theory of reproducing kernels”. In: Transactions of the

American mathematical society 68.3 (1950), pp. 337–404.
[BT11] Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces

in probability and statistics. Springer Science & Business Media, 2011.
[CS08] Andreas Christmann and Ingo Steinwart. Support vector machines. Springer,

2008.

16



Explicit (Approximate-) Universal Kernels on Compacta Eloi Tanguy

[CS10] Andreas Christmann and Ingo Steinwart. “Universal kernels on non-standard in-
put spaces”. In: Advances in neural information processing systems 23 (2010).

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine
learning 20 (1995), pp. 273–297.

[Dor+14] G Doran, K Muandet, K Zhang, and B Schölkopf. “A Permutation-Based Kernel
Conditional Independence Test”. In: 30th Conference on Uncertainty in Artificial
Intelligence (UAI 2014). AUAI Press. 2014, pp. 132–141.

[Fie23] Christian Fiedler. “Lipschitz and Hölder Continuity in Reproducing Kernel Hilbert
Spaces”. In: arXiv preprint arXiv:2310.18078 (2023).

[FSG13] Kenji Fukumizu, Le Song, and Arthur Gretton. “Kernel Bayes’ rule: Bayesian
inference with positive definite kernels”. In: The Journal of Machine Learning
Research 14.1 (2013), pp. 3753–3783.

[Góm+09] Luis Gómez-Chova, Gustavo Camps-Valls, Lorenzo Bruzzone, and Javier Calpe-
Maravilla. “Mean map kernel methods for semisupervised cloud classification”. In:
IEEE Transactions on Geoscience and Remote Sensing 48.1 (2009), pp. 207–220.

[Gre+12] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. “A kernel two-sample test”. In: The Journal of Machine Learn-
ing Research 13.1 (2012), pp. 723–773.

[HC11] Robert Hable and Andreas Christmann. “On qualitative robustness of support
vector machines”. In: Journal of Multivariate Analysis 102.6 (2011), pp. 993–
1007.

[Jay+15] Sadeep Jayasumana, Richard Hartley, Mathieu Salzmann, Hongdong Li, and
Mehrtash Harandi. “Kernel methods on Riemannian manifolds with Gaussian
RBF kernels”. In: IEEE transactions on pattern analysis and machine intelli-
gence 37.12 (2015), pp. 2464–2477.

[Li+17] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póc-
zos. “Mmd gan: Towards deeper understanding of moment matching network”.
In: Advances in neural information processing systems 30 (2017).

[MXZ06] Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. “Universal Kernels.” In:
Journal of Machine Learning Research 7.12 (2006).

[Mua+12] Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, and Bernhard Schölkopf.
“Learning from distributions via support measure machines”. In: Advances in
neural information processing systems 25 (2012).

[Mua+17] Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf,
et al. “Kernel mean embedding of distributions: A review and beyond”. In: Foun-
dations and Trends® in Machine Learning 10.1-2 (2017), pp. 1–141.

[Nad64] E. A. Nadaraya. “On Estimating Regression”. In: Theory of Probability & Its Ap-
plications 9.1 (1964), pp. 141–142. eprint: https://doi.org/10.1137/1109020.

[Par62] Emanuel Parzen. “On estimation of a probability density function and mode”. In:
The annals of mathematical statistics 33.3 (1962), pp. 1065–1076.

[Ros56] Murray Rosenblatt. “Remarks on some nonparametric estimates of a density func-
tion”. In: Ann. Math. Stat 27 (1956), pp. 832–837.

[Rud87] Walter Rudin. Real and complex analysis. McGraw-Hill, Inc., 1987.
[SS16] Saburou Saitoh and Yoshihiro Sawano. Theory of reproducing kernels and appli-

cations. Vol. 44. Springer, 2016.
[SSM98] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. “Nonlinear com-

ponent analysis as a kernel eigenvalue problem”. In: Neural computation 10.5
(1998), pp. 1299–1319.

[SS02] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

17

https://doi.org/10.1137/1109020


Explicit (Approximate-) Universal Kernels on Compacta Eloi Tanguy

[SFL11] Bharath K Sriperumbudur, Kenji Fukumizu, and Gert RG Lanckriet. “Universal-
ity, Characteristic Kernels and RKHS Embedding of Measures.” In: Journal of
Machine Learning Research 12.7 (2011).

[Sri+10] Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf,
and Gert RG Lanckriet. “Hilbert space embeddings and metrics on probability
measures”. In: The Journal of Machine Learning Research 11 (2010), pp. 1517–
1561.

[SZ21] Ingo Steinwart and Johanna F. Ziegel. “Strictly proper kernel scores and char-
acteristic kernels on compact spaces”. In: Applied and Computational Harmonic
Analysis 51 (2021), pp. 510–542.

[Wat64] Geoffrey S. Watson. “Smooth Regression Analysis”. In: Sankhyā: The Indian
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