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Abstract

Since the introduction of the Sliced Wasserstein distance in the literature, its simplicity and
efficiency have made it one of the most interesting surrogate for the Wasserstein distance in image
processing and machine learning. However, its inability to produce transport plans limits its
practical use to applications where only a distance is necessary. Several heuristics have been
proposed in the recent years to address this limitation when the probability measures are discrete.
In this paper, we propose to study these different propositions by redefining and analysing them
rigorously for generic probability measures. Leveraging the ν-based Wasserstein distance and
generalised geodesics, we introduce and study the Pivot Sliced Discrepancy, inspired by a recent
work by Mahey et al.. We demonstrate its semi-metric properties and its relation to a constrained
Kantorovich formulation. In the same way, we generalise and study the recent Expected Sliced
plans introduced by Liu et al. for completely generic measures. Our theoretical contributions are
supported by numerical experiments on synthetic and real datasets, including colour transfer and
shape registration, evaluating the practical relevance of these different solutions.
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1 Introduction
Known for its ability to capture geometric structure in probability distributions, optimal transport
has attracted considerable attention in both theoretical and applied fields. Several studies have de-
veloped its mathematical foundations in great detail [San15; Vil09], and its practical impact has
been demonstrated on a broad spectrum of applications. Originally developed for applications in
logistics, economics [Gal17] and fluid mechanics, computational optimal transport has also emerged
in the last fifteen years as a central tool in data science. It is used nowadays for a large variety
of applications, ranging from image processing, computer vision and computer graphics [RDG09;
HHR22; Fey+17; BD23; Pon+21], to domain adaptation [Cou+16; MM21; Fat+21], natural lan-
guage processing [Che+], generative modelling [ACB17; Gul+17; Sal+18; Ton+24; HCD25], quan-
tum chemistry [BDG12] or biology [Bun+24; NS25], to cite just a few.

In these applications, optimal transport is used to define meaningful discrepancies between probability
distributions, taking into account the underlying geometry of the data, but also as a way to define
optimal plans or maps between such data, in order to transform a given distribution into another
in an optimal way. In the continuous setting, we recall that the 2-Wasserstein distance W2 between
two probability measures µ and ν on Rd is defined as:

W2
2(µ, ν) = inf

π∈Π(µ,ν)

ˆ
Rd×Rd

∥x− y∥2
2 dπ(x, y),

where Π(µ, ν) is the set of couplings with marginals µ and ν. In the discrete case, with empirical
measures supported on finite point clouds, this problem becomes a linear program over a polytope.
Computing Wasserstein distances between discrete datasets comes with significant computational
expense. Classical linear programming solvers used to evaluate the transport cost between two
discrete measures of size n typically have a complexity of O(n3 logn) [PC19]. This limitation has
motivated the development of computationally lighter surrogates or approximations that preserve
key characteristics of optimal transport metrics.

One of these popular and efficient surrogate is the Sliced Wasserstein distance (SW) [Rab+12a;
Bon+15]. This approach leverages the fact that in one dimension, the Wasserstein distance has
a closed-form solution. The Sliced Wasserstein distance is derived by averaging 1D Wasserstein
distances over all directions on the unit sphere, offering a simple alternative to W2:

SW2
2(µ, ν) =

ˆ
Sd−1

W2
2(Pθ#µ, Pθ#ν) dθ,

where Pθ denotes the projection onto direction θ. Since evaluating the full integral is intractable in
practice, it is approximated by Monte Carlo sampling. One draws L random directions, computes
the 1D Wasserstein distance for each, and averages the results. The 1D Wasserstein distance between
empirical distributions of n points can be obtained in O(n logn), so the approximate SW2 distance
can be computed in O(Ln logn). This efficiency makes it especially appealing for large values of n.

The SW distance remains a true distance on the space of probability measures and retains several
fundamental features of Wasserstein distances. For probability measures with compact support, it
has been shown to be equivalent to the Wasserstein distance [Bon13]. It also has desirable statistical
properties, such as sample complexity bounds and robustness [Nad+20]. Its efficiency has been con-
firmed in numerous use cases, including domain adaptation [Lee+19], texture generation, colour and
style transfer [Hei+21; Bon+15; EW22], statistical inference [KRH18], generative modelling [DZS18;
Wu+19; CTV25], auto-encoder regularisation [Kol+18], topological data analysis [SDT25] or shape
analysis [Le+24; NNH23]. Extensions to Riemannian settings have also been investigated [BDC25].
Nevertheless, a key limitation of SW is that it does not provide a transport plan or a map between
distributions, which limits its use in applications that require correspondences between datasets.

To circumvent this issue, several heuristics have been proposed to extract approximate transport plans
from SW. A notable example is the use of stochastic gradient descent (SGD) to minimise the objective
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X 7−→ SW(δX , δY ), as a way to gradually move points from a source point cloud X to a target
point cloud1 Y . This strategy has been first explored for colour transfer and image matching tasks
in [Rab+12b; Bon+15], and can provide plausible pointwise correspondences in practice, although
theoretical guarantees remain partial [TFD24; CS25; LM25].

More recently, two alternative strategies have been introduced to build transport plans grounded
in Sliced Wasserstein distances. The first one, called Sliced Wasserstein Generalised Geodesics
(SWGG) [Mah+23; CTV25], defines a map between two discrete distributions δX = 1

n

∑
i δxi and

δY = 1
n

∑
i δyi as τθ ◦ σ−1

θ , where σθ is a permutation which sorts (θ⊤xi)ni=1 and τθ a permutation
sorting (θ⊤yi)ni=1. The Sliced Wasserstein Generalised Geodesic distance ([Mah+23], Equation 8) is
then defined as: (see also Fig. 24)

SWGG2
2(µ1, µ2, θ) :=

1
n

n∑
i=1

∥xσθ(i) − yτθ(i)∥2
2. (1)

The second one, called Expected Sliced Transport Plans, was introduced in [Liu+24] (inspired
by [Row+19]), also for discrete measures. It aims to construct couplings by averaging the 1D optimal
transport plans obtained from projections. Given σ a probability measure on the hypersphere, with
the same notations as above, the Expected Sliced Transport distance is defined as:

Eθ∼σ

[
1
n

n∑
i=1

∥xσθ(i) − yτθ(i)∥2
2

]
(2)

and the average transport plan as Eθ∼σ[τθ ◦ σ−1
θ ]. This yields a plan between the two d-dimensional

measures that reflects the averaged behaviour along slices.

These approaches provide practical and interpretable ways to define approximate transport maps.
However, they are currently defined only for discrete measures and lack a rigorous theoretical ground-
ing in more general measure spaces. Moreover, even in the discrete setting, it can easily be shown
that the RHS quantity in Eq. (1) depends on the choice of the permutations, rendering the quantity
ill-defined, as showcased in Appendix A.1.

The goal of this paper is to rigorously define and analyse these different Sliced Optimal Transport
Plans for completely generic probability measures. We introduce the Pivot Sliced Discrepancy PSθ, a
discrepancy measure based on the ν-based generalised geodesics [NP23], and generalising the Sliced
Wasserstein Generalised Geodesic distance [Mah+23]. In doing so, we also provide new theoretical
insights on the ν-based Wasserstein distance [NP23]. We prove that PSθ is well-defined, symmetric
and separates points. We then establish an equivalence between PSθ and a constrained version of
the Wasserstein distance, showing that PSθ coincides with the minimal transport cost among plans
that preserve the projected coupling. For empirical measures, we provide Monge and Kantorovich
formulations of PSθ, proving a constrained version of the Birkhoff-von Neumann theorem [Bir46].
Additionally, we study the Min-Pivot Sliced Discrepancy, a variant that matches the true Wasserstein
distance for discrete measures when the space dimension is large enough with respect to the number
of points. We then study the Expected Sliced Wasserstein Plan [Liu+24], which averages 1D sliced
transport plans to obtain high-dimensional (non sparse) couplings. This theoretical study is followed
by numerical experiments, illustrating the behaviour of the proposed transport plans on synthetic
datasets and shape registration tasks.

The paper is organised as follows. In Section 2, we recall the necessary background on ν-based
Wasserstein geodesics, along with some new theoretical results that will serve as building blocks for
the rest of the work. Section 3 presents and analyses the Pivot Sliced Discrepancy. In Section 4, we
establish a precise connection between PSθ and a constrained Wasserstein discrepancy, showing that
both quantities coincide. This correspondence is further developed in Section 5, where we explore
Monge and Kantorovich formulations of PSθ for discrete measures. We then study in Section 6 the

1For a point cloud X = (xi)N
i=1, we write δX = 1

N

∑N

i=1 δxi
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Min-Pivot Sliced Discrepancy, and show that it recovers the exact Wasserstein distance in certain
discrete settings. Section 7 introduces and analyses the concept of Expected Sliced Wasserstein Plans.
Finally, Section 8 is dedicated to numerical experiments.

2 Reminders and New Results on the ν-based Wasserstein Distance
In this section, we lay some pre-requisites for the objects at play in the paper. We begin by recalling
the concept of generalised geodesics in Section 2.1, which allows us to introduce the ν-based Wasser-
stein distance in Section 2.2. This (semi-)metric was first defined in [AGS05; NP23], and we will
sometimes also refer to it as “Pivot Wasserstein”, and prove new technical properties that will be
useful later. Later in this work, we will consider the Pivot Wasserstein distance using a “Wasserstein
Mean” pivot, and to this end we propose some reminders on Wasserstein means in Section 2.3. Fi-
nally, in Section 2.4, we revisit a disintegration formulation of the ν-based Wasserstein distance (first
proved in [NP23]), which will sometimes be convenient for computations.

2.1 Wasserstein Geodesics and Generalised Geodesics

Given two measures µ1, µ2 ∈ P2(Rd), we denote by Π∗(µ1, µ2) the set of Optimal Transport plans
between µ1 and µ2 for the cost ∥x− y∥2

2. Using such plans, we can define a notion of shortest path
(i.e. geodesic) between µ1 and µ2 in the space (P2(Rd),W2).

Definition 1. A constant-speed geodesic between µ1, µ2 ∈ P2(Rd) is a curve [0, 1] −→ P2(Rd)
constructed using an optimal transport plan γ ∈ Π∗(µ1, µ2) as follows:

µ1→2
γ (t) := ((1 − t)P1 + tP2) #γ, (3)

where P1 : (x, y) 7−→ x and P2 : (x, y) 7−→ y are the marginal projection operators. Not only is µ1→2
γ

a geodesic for the W2 metric, but all (constant-speed) geodesics between µ1 and µ2 are of the form
µ1→2
γ for a suitable γ ∈ Π∗(µ1, µ2) (this is [AGS05], Theorem 7.2.2).

If the chosen optimal transport plan γ is induced by a transport map T (which is to say that
γ = (I, T )#µ1), then the geodesic takes the intuitive “displacement” formulation:

µ1→2
γ (t) := ((1 − t)I + tT ) #µ1, (4)

with I denoting the identity map of Rd.

A remarkable property of the 2-Wasserstein space is that it is a Positively Curved (according to
Alexandrov’s metric definition of curvature) space, as proved in [AGS05] Theorem 7.3.2, Equation
7.3.12: for µ1, µ2, ν ∈ P2(Rd), γ ∈ Π∗(µ1, µ2) and t ∈ [0, 1], we have

W2
2(µ1→2

γ (t), ν) ≥ (1 − t)W2
2(µ1, ν) + tW2

2(µ2, ν) − (1 − t)tW2
2(µ1, µ2). (5)

For t := 1
2 , this can be re-written as

W2
2(µ1, µ2) ≥ 2W2

2(µ1, ν) + 2W2
2(µ2, ν) − 4W2

2(µ1→2
γ (t), ν). (6)

Unfortunately, the squared distance W2
2 is not λ-convex along these Wasserstein geodesics ([AGS05],

Example 9.1.5), which motivated [AGS05] to introduce other curves, coined “generalised geodesics”,
that satisfy this desirable property. First, we consider two optimal plans γ1 ∈ Π∗(ν, µ1) and γ2 ∈
Π∗(ν, µ2). To introduce the notion of generalised geodesics, we will require a 3-plan ρ ∈ Π(ν, µ1, µ2) ∈
P2(R3d) (i.e. with marginals ρ0 = µ, ρ1 = µ1, ρ2 = µ2), such that its bi-marginals coincide with the
plans γ1 and γ2: we require ρ0,1 := P0,1#ρ = γ1 and ρ0,2 := P0,2#ρ = γ2, where P0,i := (y, x1, x2) 7−→
(y, xi). We introduce the following notation for such 3-plans:

Γ(ν, µ1, µ2) :=
{
ρ ∈ P2(R3d) : ρ0,1 ∈ Π∗(ν, µ1) and ρ0,2 ∈ Π∗(ν, µ2)

}
. (7)
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Definition 2. A generalised geodesic based on ν between µ1 and µ2 is then defined as ([AGS05],
Definition 9.2.2), given a ρ ∈ Γ(ν, µ1, µ2):

µ1→2
ρ (t) := ((1 − t)P1 + tP2) #ρ. (8)

Note that this curve depends on the choice of the 3-plan ρ, which itself depends on the optimal
plans γ1 and γ2. The existence of such a ρ can be shown using the gluing lemma (as presented in
[San15], Lemma 5.5, for example). As desired, the curvature induced by these curves makes W2

2
convex along these geodesics (in a certain sense, see [AGS05] Definition 9.2.4), namely we have the
following inequality ([AGS05], Equation 9.2.7c), which is reversed compared to Eq. (5):

W2
2(µ1→2

ρ (t), ν) ≤ (1 − t)W2
2(µ1, ν) + tW2

2(µ2, ν) − (1 − t)tW2
2(µ1, µ2). (9)

Like before, setting t := 1
2 yields the following inequality:

W2
2(µ1, µ2) ≤ 2W2

2(µ1, ν) + 2W2
2(µ2, ν) − 4W2

2(µ1→2
ρ (t), ν). (10)

If the optimal transport plans γ1 and γ2 are induced respectively by transport maps T1 and T2, then
the choice of ρ is unique, with ρ = (I, T1, T2)#ν ([AGS05], Remark 9.2.3, see also Lemma 5.3.2 for a
formal proof). This yields the following expression of the generalised geodesic, which is substantially
more intuitive:

µ1→2
ρ (t) = ((1 − t)T1 + tT2)#ν. (11)

2.2 The ν-based Wasserstein Distance

A closely related concept is the ν-based Wasserstein (semi)-distance, introduced by Nenna and Pass
in [NP23]. This time we use a pivot measure ν to introduce a variant of the Wasserstein distance,
yielding the following definition by [NP23] (Definition 3)2:

Definition 3. For ν ∈ P2(Rd), the ν-based Wasserstein (semi)-metric between µ1, µ2 ∈ P2(Rd)
is defined as:

W2
ν(µ1, µ2) := min

ρ∈Γ(ν,µ1,µ2)

ˆ
R3d

∥x1 − x2∥2
2dρ(y, x1, x2). (12)

We illustrate the ν-based Wasserstein distance on a simple example in Fig. 1.

The question of whether the infimum defining Wν is attained was not addressed by [NP23], we show
that it is indeed the case in Proposition 1, using a technical property of the 3-plan set Γ defined
in Eq. (7). We remind that by Prokhorov’s theorem, a subset of P2(Rd) is tight set if and only if
it is pre-compact, which means that any sequence of measures in the set has a weakly converging
subsequence.

Lemma 1. 1. For tight sets P,Q1, Q2 ⊂ P2(Rd), the set

Γ(P,Q1, Q2) := {ρ ∈ Γ(ν, µ1, µ2) : (ν, µ1, µ2) ∈ P ×Q1 ×Q2}

is tight in P2(R3d).
2. Consider sequences ν(n), µ

(n)
1 , µ

(n)
2 ∈ P2(Rd)N respectively converging to ν, µ1, µ2 ∈ P2(Rd)

for the weak convergence of measures, and a sequence (ρn) ∈ P2(R3d)N such that ∀n ∈
N, ρn ∈ Γ(ν(n), µ

(n)
1 , µ

(n)
2 ) with ρn

w−−−−−→
n−→+∞

ρ ∈ P2(R3d). Then ρ ∈ Γ(ν, µ1, µ2).
3. For ν, µ1, µ2 ∈ P2(Rd), the set Γ(ν, µ1, µ2) is compact in P2(R3d).

2Their definition seems to have a typo, with Π∗(µi, ν) instead of Π∗(ν, µi). Furthermore, they work with measures
supported on a bounded and convex domain of Rd, but as they remark (footnote 4), and given [AGS05], Chapter 9,
generalisation to measures on Rd with a finite moment of order 2 is perfectly natural.
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Figure 1: Example of the couplings behind Wν(µ1, µ2) for discrete measures on R2. The measure ν
is drawn with green triangles, µ1 with blue circles and µ2 with red squares. The (unique) OT plan
γ1 between ν and µ1 is drawn with dotted blue lines, the (also unique) OT plan γ2 between ν and µ2
with red double dotted lines. The plans induce a unique valid 3-plan ρ ∈ Γ(ν, µ1, µ2), we represent
the coupling ρ1,2 between µ1 and µ2 with curved purple lines. Notice that the coupling ρ1,2 differs
from the (unique) OT coupling between µ1 and µ2.

Proof. For 1. we set ε > 0. By tightness of P,Q1, Q2 and Prokhorov’s theorem, there exists a
compact set K ⊂ Rd such that for any µ ∈ P ∪ Q1 ∪ Q2, µ(Rd \ K) < ε/3. It follows that for any
ρ ∈ Γ(P,Q1, Q2),

ρ(R3d \ K3) ≤ ρ
(
(Rd \ K) × Rd × Rd

)
+ ρ

(
Rd × (Rd \ K) × Rd

)
+ ρ

(
Rd × Rd × (Rd \ K)

)
= ν(Rd \ K) + µ1(Rd \ K) + µ2(Rd \ K)
< ε,

and thus Γ(P,Q1, Q2) is tight.

For 2. we observe that for i ∈ {1, 2}, [ρn]0,i ∈ Π∗(ν(n), µ
(n)
i ). Given that ν(n) w−−−−−→

n−→+∞
ν and

µ
(n)
i

w−−−−−→
n−→+∞

µi, and that [ρn]0,i w−−−−−→
n−→+∞

ρ0,i, [Vil09] Theorem 5.20 shows that ρ0,i ∈ Π∗(ν, µi) (the
result provides the existence of a subsequence converging to an element of Π∗(ν, µi), then uniqueness
of the limit shows ρ0,i ∈ Π∗(ν, µi)), and we conclude that ρ ∈ Γ(ν, µ1, µ2) by definition.

For 3., take (ρn) ∈ Γ(ν, µ1, µ2)N. By 1) and tightness of {ν}, {µ1}, {µ2}, there exists an extraction
α such that ρα(n)

w−−−−−→
n−→+∞

ρ ∈ P2(R3d), then we show that ρ ∈ Γ(ν, µ1, µ2) using 2) with ∀n ∈

N, ν(n) := ν, µ
(n)
i := µi for i ∈ {1, 2}.

Proposition 1. For ν, µ1, µ2 ∈ P2(Rd), it holds

inf
ρ∈Γ(ν,µ1,µ2)

ˆ
R3d

∥x1 − x2∥2
2dρ(y, x1, x2) = min

ρ∈Γ(ν,µ1,µ2)

ˆ
R3d

∥x1 − x2∥2
2dρ(y, x1, x2)

Proof. By Lemma 1 item 3), Γ(ν, µ1, µ2) is a compact subset of P2(R3d). Then the map J : ρ ∈
P2(R3d) 7−→

´
R3d ∥x1 − x2∥2

2dρ(y, x1, x2) is lower semi-continuous with respect to the weak conver-
gence of measures ([San15] Lemma 1.6), hence the infimum is attained.

Another consequence of Lemma 1 is that the ν-based Wasserstein distance is lower semi-continuous
with respect to the weak convergence of measures, which is a property that was not studied in [NP23].
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Proposition 2. The map (ν, µ1, µ2) ∈ P2(Rd)3 7−→ Wν(µ1, µ2) is lower semi-continuous with
respect to the weak convergence of measures: for any ν(n) w−−−−−→

n−→+∞
ν ∈ P2(Rd), µ(n)

i
w−−−−−→

n−→+∞
µi ∈ P2(Rd), i ∈ {1, 2}, we have:

Wν(µ1, µ2) ≤ lim inf
n−→+∞

Wν(n)(µ(n)
1 , µ

(n)
2 ). (13)

Proof. Without loss of generality, we can assume that Wν(n)(µ(n)
1 , µ

(n)
2 ) −−−−−→

n−→+∞
lim inf
n−→+∞

Wν(n)(µ(n)
1 , µ

(n)
2 )

(up to considering an extraction of all sequences). For n ∈ N, we can choose ρn ∈ Γ(ν(n), µ
(n)
1 , µ

(n)
2 )

optimal by Proposition 1. By Lemma 1 item 1) and tightness of the sets {ν(n)}, {µ(n)
1 }, {µ(n)

2 },
there exists an extraction α such that ρα(n)

w−−−−−→
n−→+∞

ρ ∈ P2(R3d). and by Lemma 1 item 2) we have
ρ ∈ Γ(ν, µ1, µ2). By lower semi-continuity of the map J : ρ ∈ P2(R3d) 7−→

´
R3d ∥x1 −x2∥2

2dρ(y, x1, x2)
([San15] Lemma 1.6), we have:

W2
ν(µ1, µ2) ≤ J(ρ) ≤ lim inf

n−→+∞
J(ρα(n)) = lim inf

n−→+∞
W2

ν(α(n))(µ(α(n))
1 , µ

(α(n))
2 ) = lim inf

n−→+∞
W2

ν(n)(µ(n)
1 , µ

(n)
2 ),

where the first inequality follows from the definition of Wν , since ρ ∈ Γ(ν, µ1, µ2) is admissible,
and the second inequality follows from the lower semi-continuity of J . The first equality is due
to the optimality of ρα(n), and the second equality follows from our reduction to the case where
Wν(n)(µ(n)

1 , µ
(n)
2 ) −−−−−→

n−→+∞
lim inf
n−→+∞

Wν(n)(µ(n)
1 , µ

(n)
2 ).

Full continuity with respect to the weak convergence of measures is not guaranteed, as shown in
Example 1.

Example 1 (Wν(·, µ2) is not continuous). Consider the following empirical measures in R2:

ν := 1
2(δz + δz′), z := (0, 1), z′ := (0,−1);

µ
(n)
1 := 1

2(δxn + δx′), xn := (−1, 2−n), x′ := (1, 0);
µ2 = 1

2(δy + δy′), y := (−2,−1), y := (2, 1).

For each n ∈ N, we have Π∗(ν, µ(n)
1 ) = {γ(n)

1 } with γ
(n)
1 := 1

2(δ(z,xn) + δ(z′,x′)). We also have
Π∗(ν, µ2) = {γ2} with γ2 := 1

2(δ(z,y′) + δ(z′,y)). This shows that Γ(ν, µ(n)
1 , µ2) = {ρn} where

ρn := 1
2(δ(z,xn,y′) + δ(z′,x′,y)), yielding the cost

W2
ν(µ

(n)
1 , µ2) = 1

2∥xn − y′∥2
2 + 1

2∥x′ − y∥2
2 = 1

2

(
32 + (1 − 2−n)2

)
+ 1

2

(
32 + 12

)
−−−−−→
n−→+∞

10.

However, we have µ
(n)
1

w−−−−−→
n−→+∞

µ1 = 1
2(δx + δx′) with x := (−1, 0). We see that

Π∗(ν, µ1) = Π(ν, µ2), and clearly the choice γ1 := 1
2(δ(z,x′) + δ(z′,x)) will be optimal, such

that ρ := 1
2(δ(z,x′,y′) + δ(z′,x,y)) is optimal for W2

ν(µ1, µ2) = 2 < lim
n−→+∞

W2
ν(µ

(n)
1 , µ2) = 10. We

illustrate the setting of this example in Fig. 2.

As remarked earlier (again, [AGS05], Remark 9.2.3), if each Π∗(ν, µi) is reduced to a single plan γi
induced by Ti (for i ∈ {1, 2}), then the only element ρ ∈ Γ(ν, µ1, µ2) is ρ = (I, T1, T2)#ν, yielding
the following formulation for the ν-based Wasserstein distance (see also [NP23], Example 9 and the
Linear OT framework [Wan+13]):

W2
ν(µ1, µ2) =

ˆ
Rd

∥T1(y) − T2(y)∥2
2dν(y). (14)

8
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Figure 2: Representation of Example 1. The measure ν is drawn with green triangles, µ(n)
1 with blue

circles, µ2 with red squares, and the limit µ with light blue diamonds. The OT plan γ
(n)
1 between ν

and µ
(n)
1 is drawn with dotted blue lines, the OT plan γ2 between ν and µ2 with red double dotted

lines, and the induced plan [ρn]1,2 between µ
(n)
1 and µ2 with curved purple lines. As for the limit,

an OT plan γ1 between ν and µ1 is drawn with curved dashed light blue lines, and the induced plan
[ρ]1,2 between µ1 and µ2 using γ1 and γ2 is drawn with thick green lines.

A result of interest is [AGS05], Lemma 9.2.1 Equation 9.2.7b, which states that for any ρ ∈ Γ(ν, µ1, µ2)
(see Eq. (7))

W2
2(µ1, µ

1→2
ρ (t)) = (1 − t)W2

2(µ1, ν) + tW2
2(µ2, ν) − (1 − t)t

ˆ
R3d

∥x1 − x2∥2
2dρ(y, x1, x2). (15)

Taking in particular a 3-plan ρ∗ ∈ Γ(ν, µ1, µ2) that is optimal for the ν-based Wasserstein distance
(Eq. (12)), we obtain

W2
2(µ1, µ

1→2
ρ∗ (t)) = (1 − t)W2

2(µ1, ν) + tW2
2(µ2, ν) − (1 − t)tW2

ν(µ1, µ2). (16)

2.3 Reminders on Wasserstein Means

A natural application of Wasserstein geodesics is the concept of Wasserstein means, which we will
require in Section 3. The following result states that Wasserstein means are exactly the middles of
Wasserstein geodesics. For the sake of completeness, we provide some reminders on geodesic middles
in the Appendix Appendix A.2, wherein we recall and prove an analogous result for geodesic spaces.

Proposition 3. For µ1, µ2 ∈ P2(Rd), the set of Wasserstein Means between µ1 and µ2

M(µ1, µ2) := argmin
µ∈P2(Rd)

W2
2(µ1, µ) + W2

2(µ, µ2) (17)

can be expressed using Wasserstein geodesics Eq. (3):

M(µ1, µ2) =
{
µ1→2
γ (1

2) : γ ∈ Π∗(µ1, µ2)
}

=
{(

1
2P1 + 1

2P2
)

#γ : γ ∈ Π∗(µ1, µ2)
}
. (18)

Proof. The result is an application of Lemma 12 in the geodesic space (P2(Rd),W2).

2.4 Another Formulation of Wν with Measure Disintegration

In this work, we will need a convenient formulation of the ν-based Wasserstein distance which uses
the notion of disintegration of measures. We recall this notion in Appendix A.3, and provide a
proof in Appendix A.4 of the Theorem by Nenna and Pass ([NP23], Theorem 12 item 1), adapted

9
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to measures in P2(Rd). In Example 2, we illustrate the result on a simple example with discrete
measures.

Example 2. We consider measures ν, µ1, µ2 ∈ P2(Rd) as in Fig. 3. We consider two optimal
plans γ1 ∈ Π∗(ν, µ1) and γ2 ∈ Π∗(ν, µ2), represented in Fig. 3. Writing the disintegrations as
γi(dy,dxi) = ν(dy)γyi (dxi), we can apply Theorem 1 to compute W2

ν(µ1, µ2):

W2
ν(µ1, µ2) = 1

2W2
2 (γz1

1 , γ
z1
2 ) + 1

2W2
2 (γz2

1 , γ
z2
2 )

= 1
2W2

2

(
1
2δx1 + 1

2δx2 ,
1
2δy1 + 1

2δy2

)
+ 1

2W2
2

(
1
2δx2 + 1

2δx3 ,
1
2δy2 + 1

2δy3

)
.

Figure 3: In this example, there is a unique optimal transport plan γ1 (purple lines) between µ1
(blue circles) and the pivot ν (green stars), and likewise for γ2 (orange double lines) between µ2 (red
squares) and ν. The disintegration kernel γz1

1 in the disintegration γ1(dz,dx) = ν(dz)γz1(dx) is the
probability measure γz1

1 = 1
2δx1 + 1

2δx2 , and likewise for γz2
1 , γ

z1
2 , γ

z2
2 .

Theorem 1 ([NP23] Theorem 12 item 1). Let ν, µ1, µ2 ∈ P2(Rd). The following equality holds:

W2
ν(µ1, µ2) = min

γi∈Π∗(ν,µi), i∈{1,2}

ˆ
Rd

W2
2(γy1 , γ

y
2 )dν(y), (19)

where for i ∈ {1, 2}, γyi ∈ P2(Rd) is defined using the disintegration γi(dy,dx) = ν(dy)γyi (dx).

Proof. We provide a proof in Appendix A.4, which generalises that in [NP23] to measures in P2(Rd),
following similar ideas.

3 The Pivot Sliced Discrepancy

3.1 Definition with the ν-based Wasserstein Distance

We introduce a generalised version of SWGG introduced in [Mah+23] for general measures in P2(Rd)
(and fixing the ambiguity issues that will be discussed in Example 8), using the ν-based Wasserstein
distance (Eq. (12), and see [NP23]), where the base measure ν is taken as a middle of projected
versions of the measures:

Definition 4. Let µ1, µ2 of P2(Rd), take µθ ∈ M(Qθ#µ1, Qθ#µ2), where Qθ : x 7−→ (θ⊤x)θ.
Then, we define

PSθ(µ1, µ2) := Wµθ
(µ1, µ2). (20)

10
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We remind that we consider to related projection operations: Pθ : x 7−→ θ⊤x and Qθ : x 7−→ (θ⊤x)θ.
The first one is valued in R, while the second is valued in Rθ ⊂ Rd. To fix ideas, we illustrate the
definition of PSθ in the case of discrete measures without projection ambiguity in Fig. 4.

Figure 4: Illustration of the definition of PSθ in the case of discrete measures without projection
ambiguity. The measure µ1 is represented by blue circles, and µ2 by red squares. The projected
measures Qθ#µ1 and Qθ#µ2 are represented by blue diamonds and red triangles respectively. The
middle µθ of the projections is represented by green stars. Once this middle is determined, we
compute optimal transport plans γ1, γ2 between µθ and µ1, µ2 respectively (in this case, they are
unique). We represent γ1 by purple lines and γ2 by orange double lines. To obtain the coupling
corresponding to the cost PSθ(µ1, µ2), we look at the targets of each point (zi) of the projected
middle µθ: since z1 is mapped to x1 in µ1 and to y1 in µ2, the coupling γθ maps x1 to x2, and so on.
The coupling γθ is represented with thick green lines.

The idea of using a pivot measure is to find an optimal manner of correcting projection ambiguities.
To illustrate this, we consider a simple pathological example in Fig. 5, where the projections of the
points of the support of µ1 and µ2 are not distinct.

Figure 5: In this example, we notice that Pθ#µ1 and Pθ#µ2 are reduced to Dirac masses, thus their
middle µθ is the middle Dirac mass. The optimal couplings γ1 and γ2 between µθ, µ1 and µθ, µ2 are
then unique. It is then easy to see that the optimal ρ ∈ Γ(µθ, µ1, µ2) is such that ρ1,2 =: γθ is the
OT coupling between µ1 and µ2. In this example, PSθ(µ1, µ2) = W2(µ1, µ2).

In Fig. 6, we illustrate another simple example where the projections of the points of the support of
µ1 are not distinct, but where they are distinct for µ2.

11
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Figure 6: In this illustration, Pθ#µ1 is a Dirac mass but not Pθ#µ2. Since we compare the middle
µθ with µ1 and not Pθ#µ1, there is in this case a unique optimal plan γ1 between µθ and µ1. The
optimal plan γ2 between µθ and µ2 is also unique. The constraint ρ0,1 = γ1, ρ0,2 = γ2 imposes that
ρ1,2 = 1

2δx1⊗y2 + 1
2δx2⊗y1 for any ρ ∈ Γ(µθ, µ1, µ2), hence there is no choice in the optimisation over

ρ.

Remark 1. As remarked by [NP23] in Proposition 16, when ν is absolutely continuous with
respect to the one-dimensional Hausdorff on a line, then the ν-based Wasserstein distance
equates the layer-wise Wasserstein metric introduced by [KPS20]. We will see in Section 4 that
PSθ equals another discrepancy that we call CWθ, and this equality allows us to show that PSθ
satisfies the triangle inequality (and thus is a distance) on the set of measures with atomless
projections, which is a stronger result than assuming absolute continuity of the pivot.

Note that this is a generalisation of SWGG introduced [Mah+23] in the sense that they show that
their definition of SWGG coincides with the expression of Eq. (20) in Proposition 4.2. To prove
that the quantity PS2

θ is well-defined, which is to say that it does not depend on the choice of
µθ ∈ M(Qθ#µ1, Qθ#µ2), we will show that in fact M(Qθ#µ1, Qθ#µ2) has only one element.

Lemma 2. Let µ1, µ2 ∈ P2(Rd), and θ ∈ Sd−1. Then

M(Qθ#µ1, Qθ#µ2) = {µθ[µ1, µ2]} , µθ[µ1, µ2] :=
[(

1
2F

[−1]
ν1 + 1

2F
[−1]
ν2

)
θ
]

#L[0,1], (21)

where for i = 1, 2, the measure νi is defined as νi = Pθ#µi, with Pθ : x 7−→ θ⊤x, L[0,1] the
Lebesgue measure on [0, 1], and where F [−1]

ν for ν ∈ P(R) denotes the pseudo-inverse of its
cumulative distribution:

∀t ∈ [0, 1], F [−1]
ν (t) := inf{s ∈ R : ν ((−∞, s]) ≥ t}. (22)

Proof. First, since the Qθ#µi, i ∈ {1, 2} are supported on Rθ, we have

M(Qθ#µ1, Qθ#µ2) = {θ#µ : µ ∈ M(Pθ#µ1, Pθ#µ2)} , (23)

which amounts to reducing a problem on a line of direction θ to a problem on R, then embedding
the result onto the line Rθ. We introduce νi := Pθ#µi for i ∈ {1, 2} and leverage Proposition 3:

M(ν1, ν2) =
{(

1
2P1 + 1

2P2
)

#γ : γ ∈ Π∗(ν1, ν2)
}
. (24)

Since the νi are measures on R, by [San15] Theorem 2.9, the set of optimal plans Π∗(ν1, ν2) is reduced
to the plan (F [−1]

ν1 , F
[−1]
ν2 )#L[0,1]. Using Eq. (24) above and the projection embedding from Eq. (23),

we obtain the result stated in Eq. (21).

12
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Remark 2. Consider µ1 = 1
n

∑
i δxi , µ2 = 1

n

∑
i δyi , θ ∈ Sd−1 and σθ, τθ two permutations

sorting respectively (θ⊤xi)i and (θ⊤yi)i (they may not be unique if the families (θ⊤xi)i and
(θ⊤yi)i are not injective). Then the projected middle (computed using Eq. (21)) is explicit:

µθ[µ1, µ2] =
1
n

n∑
i=1

δ

θ⊤
(
xσθ(i) + yτθ(i)

)
2 θ

 . (25)

Note that measure above does not depend on the choice of the sorting permutations (σθ, τθ),
since the families (θ⊤xσθ(i))i and (θ⊤yτθ(i))i do not. This expression is specific to the case where
µ1 and µ2 are uniform discrete measures with the same amount of atoms.

An interesting property of optimal transport between a measure µ ∈ P2(Rd) and another measure
ν supported on a line Rθ is that the set of optimal plans and the cost can be related to the one-
dimensional projections of µ and ν onto the line Rθ. We remind Qθ : x 7−→ (θ⊤x)θ, and introduce
Qθ⊥ := I −Qθ. The following result is a generalisation of [Mah+23], Lemma 4.6, which was written
in the case of uniform discrete measures. Note that the exponent 2 in the cost is paramount and
allows the separation of orthogonal terms.

Proposition 4. Let µ, ν ∈ P2(Rd) such that ν is supported on Rθ, where θ ∈ Sd−1. Then for
any plan γ ∈ Π(ν, µ), we have

ˆ
R2d

∥x− y∥2
2dγ(y, x) =

ˆ
R2d

(θ⊤(x− y))2dγ(y, x) +
ˆ
Rd

∥Qθ⊥x∥2
2dµ(x), (26)

with the alternate expression
ˆ
R2d

(θ⊤(x− y))2dγ(y, x) =
ˆ
R2

(s− t)2d(Pθ, Pθ)#γ(s, t). (27)

This yields the following expression for the OT cost:

W2
2(ν, µ) = W2

2(Pθ#ν, Pθ#µ) +
ˆ
Rd

∥Qθ⊥x∥2
2dµ(x), (28)

and the following characterisation of the optimal plans:

Π∗(ν, µ) =
{
γ ∈ Π(ν, µ) : (Pθ, Pθ)#γ =

(
F

[−1]
Pθ#ν , F

[−1]
Pθ#µ

)
#L[0,1]

}
. (29)

Proof. Let γ ∈ Π(ν, µ). We haveˆ
R2d

∥x− y∥2
2dγ(y, x) =

ˆ
R2d

(
∥Qθ(x− y)∥2

2 + ∥Qθ⊥(x− y)∥2
2

)
dγ(y, x)

=
ˆ
R2d

(θ⊤(x− y))2dγ(y, x) +
ˆ
Rd

∥Qθ⊥x∥2
2dµ(x), (30)

where the last equality comes from the fact that ν is supported on Rθ and that the second marginal
of γ is µ. Since the second term does not depend on γ, by taking the infimum in Eq. (26), we obtain
Eq. (28), where the equality

inf
γ∈Π(ν,µ)

ˆ
R2d

(θ⊤(x− y))2dγ(y, x) = W2
2(Pθ#ν, Pθ#µ)

is justified by [DLV24], Lemma 2. Furthermore, Eq. (26) shows that (Pθ, Pθ)#Π∗(ν, µ) ⊂ Π∗(Pθ#ν, Pθ#µ).
Indeed, take γ ∈ Π∗(ν, µ), then since πθ := (Pθ, Pθ)#γ ∈ Π(Pθ#ν, Pθ#µ), Eq. (26) yields the opti-
mality of πθ for the problem W2

2(Pθ#ν, Pθ#µ). By [San15] Theorem 2.9,

Π∗(Pθ#ν, Pθ#µ) =
{(
F

[−1]
Pθ#ν , F

[−1]
Pθ#µ

)
#L[0,1]

}
=: {π∗

θ},

13
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hence we have shown that (Pθ, Pθ)#Π∗(ν, µ) = {π∗
θ}. Conversely, take γ ∈ Π(ν, µ) such that

(Pθ, Pθ)#γ = π∗
θ , where π∗

θ is the unique element of Π∗(Pθ#ν, Pθ#µ). Then by plugging γ into
Eq. (26), we obtain γ ∈ Π∗(ν, µ) using Eq. (28). We conclude that

Π∗(ν, µ) = {γ ∈ Π(ν, µ) : (Pθ, Pθ)#γ = π∗
θ} .

3.2 Semi-Metric Properties of PSθ
We begin by stating straightforward properties of the discrepancy PSθ:

Proposition 5. Let µ1, µ2 ∈ P2(Rd), and θ ∈ Sd−1. Then the following properties hold:
• (Separation) PSθ(µ1, µ2) = 0 if and only if µ1 = µ2.
• (Symmetry) PSθ(µ1, µ2) = PSθ(µ2, µ1).
• (Upper-bound of W2) PSθ(µ1, µ2) ≥ W2(µ1, µ2).

Proof. If PSθ(µ1, µ2) = 0, then by Proposition 1, there exists ρ ∈ Γ(µθ[µ1, µ2], µ1, µ2) such that´
R3d ∥x1 − x2∥2

2dρ(y, x1, x2) = 0, then in particular, for γ := ρ1,2 ∈ Π(µ1, µ2), we have
´
R2d ∥x1 −

x2∥2
2dγ(x1, x2) = 0 and thus x1 = x2 for γ-almost-every (x1, x2) ∈ R2d. For a test function ϕ ∈ C0

b ,
we compute:

ˆ
Rd

ϕ(x1)dµ1(x1) =
ˆ
Rd

ϕ(x1)dγ(x1, x2) =
ˆ
Rd

ϕ(x2)dγ(x1, x2) =
ˆ
Rd

ϕ(x2)dν(x2),

and thus µ1 = µ2. The converse is clear, but we detail for completeness. We show that PSθ(µ, µ) = 0
for µ ∈ P2(Rd): notice that µθ[µ, µ] = Qθ#µ =: µθ, take any γ ∈ Π∗(µθ, µ) and introduce by
disintegration ρ(dy,dx1,dx2) := µθ(dy)γy(dx1)δx1=x2(dx1,dx2). We have ρ ∈ Γ(µθ, µ, µ), and for
ρ-almost-every (y, x1, x2) ∈ R3d, we have ∥x1 − x2∥2

2 = 0, hence PSθ(µ, µ) = 0.

Symmetry is immediate from the definition (Eq. (20)). As for the upper-bound, by Proposition 1 we
can take ρ ∈ Γ(µθ[µ1, µ2], µ1, µ2) optimal for PSθ(µ1, µ2), and we have ρ1,2 ∈ Π(µ1, µ2) and thus:

PS2
θ(µ1, µ2) =

ˆ
R2d

∥x1 − x2∥2
2dρ1,2(dx1,dx2) ≥ W2

2(µ1, µ2).

The triangle inequality is not satisfied in general, as shown in Example 3.

Example 3 (PSθ does not verify the triangle inequality). We represent the counter-example in
Fig. 7. Consider θ := (1, 0) and:

x1 := (−1, 0), x2 := (1, 5), µ1 := 1
2δx1 + 1

2δx2 ,

y1 := (−1, 5), y2 := (1, 0), µ2 := 1
2δy1 + 1

2δy2 ,

z1 := (0, 0), z2 := (0, 5), µ3 := 1
2δz1 + 1

2δz2 .

First, we compute PSθ(µ1, µ2): we have

u1 := (−1, 0), u2 := (1, 0), µθ[µ1, µ2] = 1
2δu1 + 1

2δu2 ,

and then we see that there are unique optimal plans between µθ[µ1, µ2] and each µ1, µ2:

Π∗(µθ[µ1, µ2], µ1) =
{
γ121 := 1

2δu1⊗x1 + 1
2δu2⊗x2

}
, Π∗(µθ[µ1, µ2], µ2) =

{
γ122 := 1

2δu1⊗y1 + 1
2δu2⊗y2

}
.

Using Theorem 1, we compute:

PSθ(µ1, µ2) =
√

1
2∥x1 − y1∥2

2 + 1
2∥x2 − y2∥2

2 = 5.

14



Sliced Optimal Transport Plans E. Tanguy, L. Chapel and J. Delon

We now turn to PSθ(µ1, µ3). This time, we have

v1 := (−1
2 , 0), v2 := (1

2 , 0), µθ[µ1, µ3] = 1
2δv1 + 1

2δv2 .

There is a unique optimal transport plan between µθ[µ1, µ3] and µ1:

Π∗(µθ[µ1, µ3], µ1) =
{
γ131 := 1

2δv1⊗x1 + 1
2δv2⊗x2

}
.

On the other hand, there are an infinite number of OT between µθ[µ1, µ3] and µ3, which
are convex combinations of two extremal plans (which correspond to the two permutations of
{1, 2}):

Π∗(µθ[µ1, µ3], µ3) =
{
γ133(t) := (1 − t)

(
1
2δv1⊗z1 + 1

2δv2⊗z2

)
+ t

(
1
2δv2⊗z1 + 1

2δv1⊗z2

)
, t ∈ [0, 1]

}
.

Following Theorem 1, we have

PSθ(µ1, µ3) = min
t∈[0,1]

1
2W2

2

(
δx1 ,

1−t
2 δz1 + t

2δz2

)
+ 1

2W2
2

(
δx2 ,

1−t
2 δz2 + t

2δz1

)
,

which is clearly minimal at t = 0, yielding

PSθ(µ1, µ3) =
√

1
2∥x1 − z1∥2

2 + 1
2∥x2 − z2∥2

2 = 1,

and by symmetry, PSθ(µ2, µ3) = PSθ(µ1, µ3) = 1. We conclude that the triangle inequality
does not hold:

PSθ(µ1, µ2) = 5 > PSθ(µ2, µ3) + PSθ(µ1, µ3) = 2.

Figure 7: Counter-example from Example 3 to the triangle inequality for PSθ. Left: illustration
of the couplings for PSθ(µ1, µ2), with the optimal coupling γθ between µ1 and µ2 for PSθ(µ1, µ2)
represented with thick green lines. Right: illustration of the couplings for PSθ(µ1, µ3). The optimal
coupling γθ for PSθ(µ1, µ3) corresponds to gluing γ131 and γ133(0).

In the following, we show that PSθ is lower semi-continuous with respect to the weak convergence
of measures, along with a result on continuity of the middle µθ[µ1, µ2]. We speak of continuity with
respect to the Euclidean topology on Sd−1, and the weak topology on P2(Rd).

Proposition 6. The map (θ, µ1, µ2) 7−→ µθ[µ1, µ2] is continuous, and (θ, µ1, µ2) 7−→
PSθ(µ1, µ2) is lower semi-continuous.

Proof. Take measure sequences µ(n)
1

w−−−−−→
n−→+∞

µ1 ∈ P2(Rd) and µ(n)
2

w−−−→
n−→

µ2 ∈ P2(Rd) and a sequence
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of projections θn −−−−−→
n−→+∞

θ ∈ Sd−1. By Lemma 12, we have

µθn [µ(n)
1 , µ

(n)
2 ] =

[(
1
2F

[−1]
Pθn #µ(n)

1
+ 1

2F
[−1]
Pθn #µ(n)

2

)
θn

]
#L[0,1] =: fn#L[0,1],

and:
µθ[µ1, µ2] =

[(
1
2F

[−1]
Pθ#µ1

+ 1
2F

[−1]
Pθ#µ2

)
θ
]

#L[0,1] =: f#L[0,1].

Let i ∈ {1, 2} and gn := F
[−1]
Pθn #µ(n)

i

, we show that (gn) converges pointwise L[0,1]-almost-everywhere to

g := F
[−1]
Pθ#µi

. Since Pθn#µ(n)
i

w−−−−−→
n−→+∞

Pθ#µi, we have by [Van00] Lemma 21.2 that for all p ∈ [0, 1]
such that g is continuous at p, gn(p) −−−−−→

n−→+∞
g(p). Since g is non-decreasing, it is continuous L[0,1]-

almost-everywhere, and thus the convergence happens L[0,1]-almost-everywhere. Having shown that
fn converges pointwise to f L[0,1]-almost-everywhere, we deduce that

µθn [µ(n)
1 , µ

(n)
2 ] w−−−−−→

n−→+∞
µθ[µ1, µ2].

By Proposition 2, we deduce that (θ, µ1, µ2) 7−→ PSθ(µ1, µ2) is lower semi-continuous.

We show in Example 4 that full continuity does not holds.

Example 4 (PSθ is not continuous with respect to the weak convergence). Consider

xn := (−1 − 2−n, 5), x′ := (−1, 0), µn := 1
2δxn + 1

2δx′ ,

y := (1, 0), y′ := (2, 5), ν := 1
2δy + 1

2δy′ .

Obviously, µn w−−−−−→
n−→+∞

µ, with µ = 1
2δ(−1,5) + 1

2δx′ . For n ∈ N, we compute easily that:

PS2
θ(µn, ν) = 1

2∥xn − y′∥2
2 + 1

2∥x′ − y∥2
2 = 36 + 3.2−n + 4−n

2 −−−−−→
n−→+∞

36.

The limit does not coincide with PS2
θ(µ, ν) = 13

2 . We summarise this counter-example in Fig. 8.

Figure 8: Representation of Example 4, showing a counter-example to the continuity of PS2
θ(·, ν)

with respect to the weak convergence of measures. At each n ∈ N, the coupling γn associated to
PS2

θ(µn, ν) between µn and ν (represented by purple lines) is imposed to assign xn to y′ and x′ to
y. However, the coupling γ∞ associated to PS2

θ(µ, ν) represented by orange double lines has more
freedom due to the fact that Pθx∞ = Pθx

′, and therefore can perform the less costly assignment of
x∞ to y and x′ to y′.
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4 Correspondence of Pivot-Sliced and a Constrained Wasserstein
Discrepancy

In this section, we will compare the quantity PSθ(µ1, µ2) defined in Eq. (20) with a particular lifting
of the 1D sliced plan between µ1 and µ2. Namely, we will compare the two quantities:

PS2
θ(µ1, µ2) := min

ρ∈Γ(µθ[µ1,µ2],µ1,µ2)

ˆ
R3d

∥x1 − x2∥2
2dρ(y, x1, x2)

?= CW2
θ(µ1, µ2) := min

ω∈Π(µ1,µ2)
(Pθ,Pθ)#ω=πθ[µ1,µ2]

ˆ
R2d

∥x1 − x2∥2
2dω(x1, x2),

(31)

where πθ[µ1, µ2] is the unique optimal plan between Pθ#µ1 and Pθ#µ2. We introduce the following
notation for the set of admissible plans ω for CWθ(µ1, µ2):

Ωθ(µ1, µ2) := {ω ∈ Π(µ1, µ2) : (Pθ, Pθ)#ω = πθ[µ1, µ2]} . (32)

Note that by compactness of Π(µ1, µ2), continuity of ω 7−→ (Pθ, Pθ)#ω and lower semi-continuity of
J := ω 7−→

´
R2d ∥ · − · ∥2

2dω, the infimum in CW2
θ is attained.

To draw a correspondence between PSθ and CWθ, we will compare their optimisation sets, and to
this end, we introduce the set Γθ,1,2 ⊂ Π(µ1, µ2) defined as:

Γθ,1,2(µ1, µ2) := {ρ1,2 : ρ ∈ Γ(µθ[µ1, µ2], µ1, µ2)} . (33)

We have by definition:

CW2
θ(µ1, µ2) = min

ω∈Ωθ(µ1,µ2)
J(ω); PS2

θ(µ1, µ2) = min
γ∈Γθ,1,2(µ1,µ2)

J(γ). (34)

4.1 First Inequality: PSθ ≤ CWθ

To prove a first inequality between PSθ and CWθ, we will show that Ωθ(µ1, µ2) ⊂ Γθ,1,2(µ1, µ2) (these
sets are defined in Eq. (32) and Eq. (33)). We start with two Lemmas on Wasserstein means. The
first result provides an explicit optimal coupling between a Wasserstein mean and the two measures.

Lemma 3. Let µ1, µ2 ∈ P2(Rd) and an optimal coupling γ ∈ Π∗(µ1, µ2).
Then µ 1

2
:= ((1−t)P1 +tP2)#γ = Law(X1,X2)∼γ

[
X1+X2

2

]
belongs to M(µ1, µ2), and furthermore

the coupling γ 1
2

:= Law(X1,X2)∼γ
[(

X1+X2
2 , X1

)]
belongs to Π∗(µ 1

2
, µ1).

Proof. By Proposition 3 we have µ 1
2

∈ M(µ1, µ2), and W2
2(µ 1

2
, µ1) = 1

4W2
2(µ1, µ2). We compute:

W2
2(µ 1

2
, µ1) ≤ E

(X1,X2)∼γ

[∥∥∥X1+X2
2 −X1

∥∥∥2

2

]
= 1

4 E
(X1,X2)∼γ

[
∥X1 −X2∥2

2

]
= 1

4W2
2(µ1, µ2),

showing optimality of the coupling γ 1
2
, since by Proposition 3, W2

2(µ 1
2
, µ1) = 1

4W2
2(µ1, µ2).

Note that Lemma 3 is also a consequence of [AGS05] Lemma 7.2.1 (which states a stronger result with
more abstract language). The following second lemma relates an admissible plan ω ∈ Ωθ(µ1, µ2) for
CWθ(µ1, µ2) to an explicit optimal coupling between the projected middle µθ[µ1, µ2] and the measures
µ1, µ2, which will be useful to construct an admissible 3-plan for PSθ(µ1, µ2).

Lemma 4. Let ω ∈ Π(µ1, µ2) such that (Pθ, Pθ)#ω = Π∗(Pθ#µ1, Pθ#µ2). Let (X1, X2) ∼ ω
and Y := PθX1+PθX2

2 θ. Then Law[Y ] = µθ[µ1, µ2], and Law[(Y,Xi)] ∈ Π∗(µθ[µ1, µ2], µi), i ∈
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{1, 2}.

Proof. First, we apply Lemma 3 to the optimal coupling (PθX1, PθX2), which shows that Law[PθY ] =
Pθ#µθ[µ1, µ2], thus that Law[Y ] = µθ[µ1, µ2]. Lemma 3 also shows that (PθY, PθX1) is the op-
timal coupling between Pθ#µθ[µ1, µ2] and Pθ#µ1. Then by Eq. (29) in Proposition 4, it fol-
lows that Law[(Y,X1)] ∈ Π∗(µθ[µ1, µ2], µ1), and the same reasoning applies to Law[(Y,X2)] ∈
Π∗(µθ[µ1, µ2], µ2).

Using Lemma 3 and Lemma 4, we can now show an inequality between PSθ and CWθ:

Proposition 7. Let µ1, µ2 ∈ P2(Rd), and θ ∈ Sd−1. The two sets defined in Eq. (32) and
Eq. (33) verify Ωθ(µ1, µ2) ⊂ Γθ,1,2(µ1, µ2), and the two quantities defined in Eq. (31) verify
PSθ(µ1, µ2) ≤ CWθ(µ1, µ2).

Proof. Let ω ∈ Π(µ1, µ2) such that (Pθ, Pθ)#ω = Π∗(Pθ#µ1, Pθ#µ2) optimal for CWθ(µ1, µ2).
Consider (X1, X2) ∼ ω and Y := PθX1+PθX2

2 θ. By Lemma 4, we have Law[Y ] = µθ[µ1, µ2],
and Law[(Y,Xi)] ∈ Π∗(µθ[µ1, µ2], µi), i ∈ {1, 2}. By definition the 3-plan ρ defined by ρ :=
Law[(Y,X1, X2)] belongs to Γ(µθ[µ1, µ2], µ1, µ2), thus ω ∈ Γθ,1,2(µ1, µ2). We compute:

PS2
θ(µ1, µ2) ≤

ˆ
R3d

∥x1 − x2∥2
2dρ(y, x1, x2) =

ˆ
R2d

∥x2 − x2∥2
2dω(x1, x2) = CW2

θ(µ1, µ2).

4.2 Converse Inequality: PSθ ≥ CWθ

To show the converse inequality CWθ(µ1, µ2) ≤ PSθ(µ1, µ2), we will use more technical arguments
from [AGS05] Lemma 7.2.1, which will show that (denoting µθ := µθ[µ1, µ2],) for i ∈ {1, 2}, the unique
optimal plan πi between Pθ#µθ and Pθ#µi is induced by a transport map Ti, i.e. πi = (I, Ti)#Pθ#µθ.
This is a consequence of the fact that µθ is chosen as the middle of the geodesic between Pθ#µ1 and
Pθ#µ2, and remarkably holds without atomless assumptions on the Pθ#µi.

Theorem 2. Let µ1, µ2 ∈ P2(Rd) and θ ∈ Sd−1. Then the two sets defined in Eq. (32) and
Eq. (33) verify Γθ,1,2(µ1, µ2) = Ωθ(µ1, µ2), and the two quantities defined in Eq. (31) verify
PSθ(µ1, µ2) = CWθ(µ1, µ2).

Proof. We have already shown that PSθ(µ1, µ2) ≤ CWθ(µ1, µ2) in Proposition 7. We now show that
Γθ,1,2(µ1, µ2) ⊂ Ωθ(µ1, µ2) (we write µθ := µθ[µ1, µ2], and πθ the unique element of Π∗(Pθ#µ1, Pθ#µ2)).
Let ρ ∈ Γ(µθ, µ1, µ2). We introduce η := (Pθ, Pθ, Pθ)#ρ ∈ Π(ν 1

2
, ν1, ν2), where for convenience

we write νi := Pθ#µi for i ∈ {1, 2} and ν 1
2

:= Pθ#µθ. By Eq. (29) in Proposition 4, we have
η0,i ∈ Π∗(ν 1

2
, νi).

We now write η using OT maps. By [AGS05] Lemma 7.2.1, since ν 1
2

= M(ν1, ν2) (i.e. it is the
middle of the constant-speed geodesic between ν1 and ν2, which is unique since the measures are
one-dimensional), for i ∈ {1, 2} the transport plan η0,i ∈ Π∗(ν 1

2
, νi) is induced by a non-decreasing

transport map Ti, which is to say that η0,i = (I, Ti)#ν 1
2
. It follows that for η-almost-every (t, s1, s2) ∈

R3, we have s1 = T1(t) and s2 = T2(t).

We now verify that η1,2 ∈ Π∗(ν1, ν2) using the cyclical monotonicity criterion: Let (s1, s2), (s′
1, s

′
2) ∈

supp η1,2 such that s1 < s′
1. Our earlier considerations on η show that there exists t, t′ ∈ R verifying

s1 = T1(t), s2 = T2(t) and s′
1 = T1(t′), s′

2 = T2(t′). Since s1 = T1(t) < T1(t′) = s′
1 and T1 is

non-decreasing, we deduce t < t′. Now since T2 is non-decreasing, t < t′ implies that s2 = T2(t) ≤
T2(t′) = s′

2. We have shown the following property of η1,2:

∀(s1, s2), (s′
1, s

′
2) ∈ supp η1,2, s1 < s′

1 =⇒ s2 ≤ s′
2. (35)
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By [San15] Lemma 2.8, Eq. (35) implies that η1,2 is the co-monotone plan between ν1 and ν2, and
by [San15] Theorem 2.9, we conclude that η1,2 ∈ Π∗(ν1, ν2).

Having shown that η1,2 ∈ Π∗(ν1, ν2), we conclude that (Pθ, Pθ)#ρ1,2 ∈ Π∗(Pθ#µ1, Pθ#µ2), and by
definition we conclude ρ1,2 ∈ Ωθ(µ1, µ2), which shows the inclusion Γθ,1,2(µ1, µ2) ⊂ Ωθ(µ1, µ2), and
equality is obtained by combining with Proposition 7. By Eq. (34) we conclude that CWθ(µ1, µ2) =
PSθ(µ1, µ2).

4.3 Triangle Inequality for PSθ for Projection-Atomless Measures

Using Theorem 2 and the following technical lemma on one-dimensional 3-plans, we will show that
PSθ is a metric on the set of probability measures whose projections on Rθ are atomless. We show
that in the one-dimensional atomless case, 3-plans with two optimal bi-marginals automatically verify
that all their bi-marginals are optimal. In terms of random variables, Lemma 5 states that if (X1, X2)
and (X1, X3) are optimal couplings, then so is (X2, X3).

Lemma 5. Let µ1, µ2, µ3 ∈ P2(R) such that µ1 and µ2 are atomless, and let ρ ∈ Π(µ1, µ2, µ3)
be a 3-plan such that ρ1,2 ∈ Π∗(µ1, µ2) and ρ1,3 ∈ Π∗(µ1, µ3). Then ρ2,3 ∈ Π∗(µ2, µ3).

Proof. For i ∈ {1, 2, 3}, introduce the c.d.f. Fi of µi. Take (X1, X2, X3) ∼ ρ. By [San15] Theorem 2.9,
since µ1 is atomless and (X1, X3) is optimal, we have almost-surely X3 = F

[−1]
3 ◦ F1(X1). Likewise,

since µ2 is atomless and (X2, X1) is optimal, we have almost-surely X1 = F
[−1]
1 ◦F2(X2). Combining

these equalities yields almost-surely:

X3 = F
[−1]
3 ◦ F1(X1) = F

[−1]
3 ◦ F1 ◦ F [−1]

1 ◦ F2(X2).

By continuity of F1 (since µ1 is atomless) and defining F1(−∞) := 0 and F1(+∞) := 1, we have
F1(R) ∪ {F1(−∞)} ∪ {F1(+∞)} = [0, 1], allowing us to apply [EH13] Proposition 2.3 item 4), which
yields F1 ◦ F [−1]

1 = I[0,1].

We have shown that almost-surely X3 = F
[−1]
3 ◦ F2(X2), which shows by [San15] Theorem 2.9 that

(X2, X3) is the optimal coupling between µ2 and µ3.

We can now show that PSθ verifies the triangle inequality on the set of probability measures with
atomless projections. Combining this statement with Proposition 5 shows that PSθ is a metric this
subset of P2(Rd).

Proposition 8. Let θ ∈ Sd−1 and P2,a(Rd, θ) be the set of probability measures µ ∈ P2(Rd)
such that Pθ#µ is atomless. The quantity PSθ is a metric on P2,a(Rd, θ).

Proof. First, by Proposition 5, it only remains to show the triangle inequality. Let µ1, µ2, µ3 ∈
P2,a(Rd, θ) and let ω1,2 ∈ Ωθ(µ1, µ2) be optimal for CWθ(µ1, µ2), and likewise let ω2,3 ∈ Ωθ(µ2, µ3)
be optimal for CWθ(µ2, µ3). We apply the standard gluing technique (see for example [San15] Lemma
5.5): the second marginal of ω1,2 and the first marginal of ω2,3 are both µ2, hence we can write their
disintegrations with respect to µ2 as:

ω1,2(dx1, dx2) = µ2(dx2)ωx2
1,2(dx1), ω2,3(dx2, dx3) = µ2(dx2)ωx2

2,3(dx3).

We now introduce the “composition” 3-plan ρ ∈ Π(µ1, µ2, µ3) as:

ρ(dx1, dx2, dx3) := µ2(dx2)ωx2
1,2(dx1)ωx2

2,3(dx3).

Writing ρθ := (Pθ, Pθ, Pθ)#ρ, by definition of ω1,2 and ω2,3, we have [ρθ]1,2 = πθ[µ1, µ2] and [ρθ]2,3 =
πθ[µ2, µ3]. By Lemma 5, we deduce that ρ1,3 = πθ[µ1, µ3], since each Pθ#µi is atomless. This shows
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that ρ1,3 ∈ Ωθ(µ1, µ2). Denoting ϕi := (x1, x2, x3) 7−→ xi for i ∈ {1, 2, 3}, we have:

CWθ(µ1, µ3) ≤ ∥ϕ1 − ϕ3∥L2(ρ1,3) = ∥ϕ1 − ϕ3∥L2(ρ)

≤ ∥ϕ1 − ϕ2∥L2(ρ) + ∥ϕ2 − ϕ3∥L2(ρ) = ∥ϕ1 − ϕ2∥L2(ω1,2) + ∥ϕ2 − ϕ3∥L2(ω2,3)

= CWθ(µ1, µ2) + CWθ(µ2, µ3).

Using Theorem 2, we deduce the triangle inequality for PSθ.

5 A Monge Formulation of PSθ Between Point Clouds

5.1 The Case of Non-Ambiguous Projections

A direct consequence of Theorem 1 is that, in the case of point clouds with non-ambiguous projections,
the computation of PSθ can be done simply by sorting the projections and taking the associated plan
between the projected measures.

Corollary 1. Let (x1, · · · , xn) ∈ (Rd)n and (y1, · · · , yn) ∈ (Rd)n, and θ ∈ Sd−1 such that
the families (Pθxi)i and (Pθyi)i are injective. Then for the measures µ1 := 1

n

∑n
i=1 δxi , µ2 :=

1
n

∑n
i=1 δyi , it holds

PS2
θ(µ1, µ2) =

1
n

n∑
i=1

∥xσθ(i) − yτθ(i)∥2
2,

where PSθ is introduced in Definition 4 and where σθ, τθ are the (unique) permutations sorting
(Pθxi) and (Pθyi). For injective families (xi) and (yi), the injectivity assumptions holds for
U(Sd−1)-almost-every θ ∈ Sd−1.

Proof. We begin under the injectivity assumptions, which allows us to define σθ, τθ as the (unique)
permutations sorting (Pθxi) and (Pθyi) respectively, and for i ∈ J1, nK, let zi := 1

2Pθ(xσθ(i) + yτθ(i)).
We remark that the family (zi) is increasing by construction (we provide further details at the end
of the proof for almost-sure injectivity) and denote ν := 1

n

∑
i δzi . Let γ1 ∈ Π∗(ν, µ1), and write

γ1 =
∑
i,j

Ai,jδ(zi,xσθ(j)).

By Proposition 4 and the injectivity assumptions, we have (Pθ, Pθ)#γ1 = 1
n

∑
i δ(Pθzi,Pθxσθ(i)), and

thus injectivity allows us to identify the coefficients Ai,j , yielding γ1 = 1
n

∑
i δ(zi,xσθ(i)), and in par-

ticular, for any i ∈ J1, nK, γzi
1 = δxσθ(i) . The same reasoning applies to γ2 ∈ Π∗(ν, µ2), and thus

Theorem 1 yields

PS2
θ(µ1, µ2) = W2

ν(µ1, µ2) =
1
n

n∑
i=1

∥xσθ(i) − yτθ(i)∥2
2

Regarding the almost-sure injectivity claim, assume now that the families (xi) and (yi) are injective,
and take θ ∼ U(Sd−1). Then (Pθxi) is almost-surely injective, since P(Pθxi = Pθxj) = P(θ ∈
(xi−xj)⊤). The same reasoning applies to (Pθyi), and the injectivity of (zi) comes from the fact that
almost-surely, for i < j, we have Pθxσθ(i) < Pθxσθ(j), and Pθyτθ(i) < Pθxτθ(j), hence by sum zi < zj ,
almost-surely.

5.2 Problem Formulation and Reduction to Sorted Projections

The natural question that arises is the impact of projection ambiguity, i.e. non-injectivity of (Pθxi)
or (Pθyj). In this section, we will start from the equality PSθ = CWθ from Theorem 2, to provide
the following Monge formulation of PSθ between point clouds (without injectivity assumptions), that

20



Sliced Optimal Transport Plans E. Tanguy, L. Chapel and J. Delon

we will prove in Theorem 4:

CW2
θ

 1
n

n∑
i=1

δxi ,
1
n

n∑
j=1

δyj

 = min
(σ,τ)∈Sθ(X,Y )

1
n

n∑
i=1

∥xσ(i) − yτ(i)∥2
2,

where Sθ(X,Y ) is the set of pairs of permutations (σ, τ) such that σ sorts (Pθxi)ni=1 and τ sorts
(Pθyi)ni=1, for given X := (x1, · · · , xn) ∈ Rn×d and Y := (y1, · · · , yn) ∈ Rn×d:

Sθ(X,Y ) := Sθ(X) × Sθ(Y ), Sθ(X) :=
{
σ ∈ Sn : ∀i ∈ J1, n− 1K, Pθxσ(i) ≤ Pθxσ(i+1),

}
, (36)

with an analogous definition for Sθ(Y ). We will reduce to the case where the identity permutation
sorts the projections (Pθxi)ni=1 and (Pθyi)ni=1, which will greatly simplify notation and proofs. The
following Lemma states that re-labelling the points does not change the value of CWθ and of the
Monge formulation.

Lemma 6. Let X,Y ∈ Rn×d and σ0, τ0 ∈ Sn. Denote by X ◦ σ0 := (xσ0(1), · · · , xσ0(n))ni=1 and
likewise Y ◦ τ0 := (yτ0(1), · · · , yτ0(n))ni=1. Then we have:

CW2
θ

 1
n

n∑
i=1

δxi ,
1
n

n∑
j=1

δyj

 = CW2
θ

 1
n

n∑
i=1

δxσ0(i) ,
1
n

n∑
j=1

δyτ0(j)

 ,
and for the Monge formulation, we have the following cost equality:

min
(σ,τ)∈Sθ(X,Y )

1
n

n∑
i=1

∥xσ(i) − yτ(i)∥2
2 = min

(σ,τ)∈Sθ(X◦σ0,Y ◦τ0)

1
n

n∑
i=1

∥xσ0◦σ(i) − yτ0◦τ(i)∥2
2. (37)

Proof. The first equality is simply a consequence of the equality between measures:

1
n

n∑
i=1

δxi = 1
n

n∑
i=1

δxσ0(i) ,
1
n

n∑
j=1

δyj = 1
n

n∑
j=1

δyτ0(j) .

For the second equality, notice that a permutation σ ∈ Sn sorts (Pθxσ0(i))ni=1 if and only if Pθxσ0◦σ(1) ≤
· · · ≤ Pθxσ0◦σ(n) if and only if σ0 ◦ σ sorts (Pθxi)ni=1, thus we obtain:

Sθ(X ◦ σ0, Y ◦ τ0) =
{

(σ−1
0 ◦ σ, τ−1

0 ◦ τ), (σ, τ) ∈ Sθ(X,Y )
}
.

Eq. (37) follows by change of variables.

Thanks to Lemma 6, we can assume without loss of generality (for the cost values) that the identity
permutation sorts the projections (Pθxi)ni=1 and (Pθyi)ni=1. We formulate this assumption as follows:

Assumption 1. The points X,Y ∈ Rn×d and θ ∈ Sd−1 are such that:

Pθx1 ≤ · · · ≤ Pθxn and Pθy1 ≤ · · · ≤ Pθyn.

Assumption 1 holds up to relabelling the points (xi) and (yj): taking σ ∈ Sn sorting (Pθxi) and
τ ∈ Sn sorting (Pθyj), the relabelled points X̃ := (xσ(i)) =: X ◦ σ and Ỹ := (yτ(j)) =: Y ◦ τ verify
the condition.

5.3 A Kantorovich Formulation of CWθ Between Point Clouds

We begin by a characterisation of Sθ(X,Y ), which states that a pair (σ, τ) belongs to Sθ(X,Y ) if
and only if each “ambiguity” set {i : Pθxi = t} is stable by σ and likewise for τ .
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Lemma 7. Let X := (x1, · · · , xn) ∈ Rn×d, Y := (y1, · · · , yn) ∈ Rn×d and θ ∈ Sd−1 verifying
Assumption 1. Let A := #{Pθxi}ni=1 and B := #{Pθyj}nj=1. Write {Pθxi}ni=1 = (sa)Aa=1 where
s1 < · · · < sA and likewise {Pθyj}nj=1 = (tb)Bb=1 where t1 < · · · < tB. Introduce the “ambiguity
group” sets:

∀a ∈ J1, AK, Ia := {i ∈ J1, nK : Pθxi = sa} , ∀b ∈ J1, BK, Jb := {j ∈ J1, nK : Pθyj = tb} . (38)

Then the set Sθ(X,Y ) can be re-written as follows:

Sθ(X,Y ) =
{

(σ, τ) ∈ S2
n : ∀a ∈ J1, AK, σ(Ia) = Ia, ∀b ∈ J1, BK, τ(Jb) = Jb

}
. (39)

Proof. We show the property Sθ(X) = S̃ := {σ ∈ Sn : ∀a ∈ J1, AK, σ(Ia) = Ia} by double inclusion.
First, since s1 < · · · < sA, the inclusion S̃ ⊂ Sθ(X) is clear. For the converse inclusion, take
σ ∈ Sθ(X). By definition and by Assumption 1, we have:

Pθx1 ≤ · · · ≤ Pθxn; Pθxσ(1) ≤ · · · ≤ Pθxσ(n),

which implies that ∀i ∈ J1, nK, Pθxi = Pθxσ(i). Take now a the unique element of J1, AK such that
i ∈ Ia. We have sa = Pθxi = Pθxσ(i) and thus σ(i) ∈ Ia, and we conclude that σ ∈ S̃. The proof for
Sθ(Y ) follows verbatim, and Eq. (39) follows from the definition (see Eq. (36)).

To illustrate Lemma 7, we consider an example with projection ambiguities in Fig. 9.

Figure 9: In this example we consider two discrete uniform measures with n := 4 points with
projection ambiguity: s1 := Pθx1 = Pθx2 < s2 := Pθx3 = Pθx4 and t1 := Pθy1 = Pθy2 = Pθy3 <
t2 := Pθx4. In the notation of Lemma 7, we have A = B = 2 and I1 = {i1, i2}, I2 = {i3, i4}, J1 =
{j1, j2, j3} and J2 = {j4}. We consider a permutation pair (σ, τ) ∈ Sθ(X,Y ), specifically σ :=
(2, 1, 3, 4) and τ := (2, 3, 1, 4). We see that σ sorts the sequence (Pθxi)ni=1 and that I1 and I2 are
stable by σ, and likewise for τ .

We now write a discrete Kantorovich formulation of CWθ between point clouds, whose expression we
will be able to simplify later. The main idea is that transport plans P are constrained to exchange
exactly as much mass between Ia and Jb as the one-dimensional OT plan πθ between Pθ#µ and
Pθ#ν sends from sa to tb, as illustrated in Fig. 10.

Proposition 9. Under Assumption 1, let µ := 1
n

∑n
i=1 δxi and ν := 1

n

∑n
j=1 δyj be empirical

measures. Then the CWθ discrepancy introduced in Eq. (31) has the following expression:

CW2
θ

 1
n

n∑
i=1

δxi ,
1
n

n∑
j=1

δyj

 = min
P∈U∩Pθ(X,Y )

n∑
i=1

n∑
j=1

∥xi − yj∥2
2Pi,j , (40)

U := {P ∈ Rn×n
+ : P1 = 1

n1, P⊤1 = 1
n1}, (41)
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Pθ(X,Y ) :=

P ∈ Rn×n : ∀(a, b) ∈ J1, AK × J1, BK,
∑

(i,j)∈Ia×Jb

Pi,j = 1
n

#(Ia ∩ Jb)

 . (42)

Proof. Fix ω ∈ Ωθ(µ, ν) (see Eq. (32)). By the marginal constraints, we have suppω ⊂ {(xi, yj)}i,j ,
allowing us to define P ∈ Rn×n

+ by ∀(i, j) ∈ J1, nK2, Pi,j = ω({(xi, yj)}). Since ω ∈ Π(µ, ν), we
verify immediately that P ∈ U. As for the constraint (Pθ, Pθ)#ω = πθ[µ, ν] =: πθ, notice that by
construction (see the notations in Lemma 7), we can write by [San15] Theorem 2.9 for any (σ, τ) ∈
Sθ(X,Y ) that πθ = 1

n

∑
i δ(Pθxσ(i),Pθyτ(i)). Since {Pθxi}ni=1 = (sa)Aa=1 and {Pθyj}nj=1 = (tb)Bb=1, it

follows that for any (a, b) ∈ J1, AK × J1, BK:

πθ({(sa, tb)}) =
n∑
k=1

1
n

1(σ(k) ∈ Ia)1(τ(k) ∈ Jb) =
n∑
k=1

1
n

1(k ∈ Ia ∩ Jb) = 1
n

#(Ia ∩ Jb),

where we have used that σ(Ia) = Ia and τ(Jb) = Jb, which holds by Lemma 7. We can now show
that P ∈ Pθ(X,Y ) using the constraint (Pθ, Pθ)#ω = πθ:

1
n

#(Ia ∩ Jb) = πθ({(sa, tb)}) = (Pθ, Pθ)#ω({(sa, tb)}) =
∑

(i,j)∈Ia×Jb

Pi,j .

The cost
´
R2d ∥x−y∥2

2dω(x, y) writes∑i,j ∥xi−yj∥2
2Pi,j by definition of P . Conversely, it can readily be

checked with the same computations that for any P ∈ U∩Pθ(X,Y ), the coupling ω := ∑
i,j Pi,jδ(xi,yj)

belongs to Ωθ(µ, ν), and yields the same transportation cost. We conclude that the equality in Eq. (40)
holds.

Figure 10: We continue with the example from Fig. 9 and illustrate the unique optimal transport
plan πθ = 1

2δ(s1,t1) + 1
4δ(s2,t1) + 1

4δ(s2,t2) between Pθ#µ = 1
2δs1 + 1

2δs2 and Pθ#ν = 3
4δt1 + 1

4δt2 . We
show a particular transport plan P ∈ U ∩ Pθ(X,Y ) which is not a permutation matrix. For the
constraints, notice for example that πθ({(s1, t1)}) = #(I1∩J1)

4 = 1
2 = ∑2

i=1
∑3
j=1 Pi,j .

The discrete problem in Eq. (40) can be seen as a constrained Kantorovich problem. Our goal is now
to show that it admits a constrained Monge formulation, which is to say a minimisation over the
constrained set of permutations Sθ(X,Y ). To show this, we will adapt the proof of the Birkhoff Von
Neumann Theorem [Bir46] (see also [Pey19] Theorem 2 and [Hur08] for other proofs which inspired
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our method). Our objective is now to build up definitions and technical lemmas to adapt Birkhoff’s
Theorem, and prove the generalisation stated in Theorem 3. We will consider particular elements of
U called permutation matrices:

∀(α, β) ∈ S2
n, P

α,β :=
[ 1
n

1(α(i) = β(j))
]
i,j
. (43)

This method of writing permutation matrices differs from the usual P σi,j := 1
n1(σ(i) = j), and will be

more convenient for our purposes. An elementary property of permutation matrices is that:

∀(α, β, φ) ∈ S3
n, P

α,β = Pφ◦α,φ◦β, (44)

since φ ◦α(i) = φ ◦ β(j) ⇐⇒ α(i) = β(j). For S ⊂ S2
n, we will write PS := {Pα,β : (α, β) ∈ S}. The

Birkhoff Von Neumann Theorem [Bir46] states that ExtrU = PS2
n , where the set of extreme points

of a convex set is defined as:

Definition 5. The set of extreme points ExtrC of a convex set C is the set of points c ∈ C
that cannot be written c = 1

2a+ 1
2b for some a, b ∈ C.

Our objective is to show that Extr(U ∩ Pθ(X,Y )) = PSθ(X,Y ). We begin with a Lemma showing a
condition for Pα,β to belong to Pθ(X,Y ).

Lemma 8. Under Assumption 1, for any (α, β) ∈ S2
n, we have

Pα,β ∈ Pθ(X,Y ) ⇐⇒ ∃φ ∈ Sn : (φ ◦ α,φ ◦ β) ∈ Sθ(X,Y ).

In other words, Pα,β ∈ Pθ(X,Y ) if and only if Pα,β = P σ,τ for some (σ, τ) ∈ Sθ(X,Y ).

Proof. Suppose that Pα,β ∈ Pθ(X,Y ). Applying the definition of Pθ(X,Y ) from Eq. (42), we see
that (using the notation of Lemma 7):

∀(a, b) ∈ J1, AK× J1, BK,
∑

(i,j)∈Ia×Jb

1(α(i) = β(j))
n

= #(Ia ∩ Jb)
n

, thus #(α(Ia)∩β(Jb)) = #(Ia∩Jb).

Let E := {(a, b) : Ia∩Jb ̸= ∅}. For any (a, b) ∈ E, we have #(α(Ia)∩β(Jb)) = #(Ia∩Jb), and thus we
can introduce a bijection φa,b : α(Ia)∩β(Jb) −→ Ia∩Jb. We have the partition J1, nK = ∪(a,b)∈EIa∩Jb
where the union is disjoint and the elements are non-empty. Since α, β are permutations and by the
property #(α(Ia) ∩ β(Jb)) = #(Ia ∩ Jb), we have the partition J1, nK = ∪(a,b)∈Eα(Ia) ∩ β(Jb), again
with disjoint unions and non-empty terms. We can define ψ : J1, nK −→ E a map such that ∀i ∈
J1, nK, i ∈ α(Ia) ∩ β(Jb) where ψ(i) = (a, b). The map φ := i 7−→ φψ(i)(i) is therefore well-defined,
we verify easily that it is a permutation of J1, nK using the partition J1, nK = ∪(a,b)∈Eα(Ia) ∩ β(Jb).

We now fix a ∈ J1, AK and show that φ◦α(Ia) = Ia. Let i ∈ Ia, we have α(i) ∈ α(Ia), and there exists
(a unique) b ∈ J1, BK such that α(i) ∈ α(Ia) ∩ β(Jb). By definition, we get ψ(α(i)) = (a, b), and thus
φ(α(i)) = φa,b(α(i)) ∈ Ia∩Jb ⊂ Ia. We conclude that φ◦α(Ia) ⊂ Ia and similarly that φ◦β(Jb) ⊂ Jb
for any b ∈ J1, BK. By Lemma 7, we conclude that (φ ◦ α,φ ◦ β) ∈ Sθ(X,Y ), concluding the “left to
right” implication.

Conversely, let φ ∈ Sn and (σ, τ) ∈ Sθ(X,Y ). Notice that P σ,τ = Pφ◦σ,φ◦τ by Eq. (44). We check
that P σ,τ ∈ Pθ(X,Y ) by applying the definition: let (a, b) ∈ J1, AK × J1, BK, we have:

∑
(i,j)∈Ia×Jb

P σ,τi,j = #(σ(Ia) ∩ τ(Jb))
n

= #(Ia ∩ Jb)
n

,

where we used that σ(Ia) = Ia and τ(Jb) = Jb, which is a consequence of Lemma 7.
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5.4 Technical Lemmas on Bipartite Graphs Associated to Couplings

To study the extreme points of U ∩ Pθ(X,Y ) we will adapt the techniques from [Pey19; Hur08] and
consider the bipartite graph associated to a matrix in P ∈ Rn×m

+ , which we define in Definition 6.

Definition 6. The bipartite directed graph GP associated to a matrix P ∈ Rn×m
+ is the graph

with vertices VP := {ik, k ∈ J1, nK} ∪ {jl, ℓ ∈ J1,mK} and directed edges:

EP := {(ik, jl), (k, ℓ) ∈ J1, nK × J1,mK, : Pik,jl > 0}∪{(jl, ik), (k, ℓ) ∈ J1, nK × J1,mK, Pik,jl > 0} .

By slight abuse of notation, we will often write {ik, k ∈ J1, nK} as simply J1, nK and {jl, ℓ ∈ J1,mK}
as J1,mK, seeing them as disjoint sets of labels. The i’s will be called “left” vertices, and the j’s
“right” vertices. Edges (i, j) being directed from left to right, we will call them “right” edges, and
likewise edges (j, i) will be referred to as “left” edges. We continue the example from Fig. 10 in
Fig. 11 showing the bipartite graph associated to the matrix P .

Figure 11: We consider the matrix P from Fig. 10 and show the associated bipartite graph GP . The
“right” edges from an i ∈ J1, nK on the left to a j ∈ J1, nK on the right are represented in blue, and
the “left edges” are represented in red. Note that by construction, for each (i, j) such that Pi,j > 0,
there is both a left edge (i, j) and a right edge (j, i) in GP .

In the following, we will extract a particular cycle i1 → j1 → i2 → · · · → ip+1 = i1 from the graph
GP of an element P ∈ U \ PS2

n . In proofs of Birkhoff’s theorem, this is commonly used to show that
P is not an extreme point of U. In our setting, we will also make use of this property, in addition to
strategies specific to Pθ(X,Y ).

Lemma 9. Assume n ≥ 2 and let P ∈ U \ PS2
n .

Then there exists a cycle (i1, j1, · · · , ip, jp, ip+1) ∈ J1, nK2p+1 in GP with p ≥ 2 verifying:

ip+1 = i1; (ik)pk=1 and (jk)pk=1 are injective;
and ∀k ∈ J1, pK, Pik,jk ∈ (0, 1

n), Pik+1,jk ∈ (0, 1
n).

(45)

Proof. First, we show a weaker result:

∃p ≥ 2, ∃(i1, j1, · · · , ip, jp, ip+1) ∈ J1, nK2p+1

such that ip+1 = i1; ∀k ∈ J1, pK, ik ̸= ik+1, ∀k ∈ J1, p− 1K, jk ̸= jk+1;
and ∀k ∈ J1, pK, Pik,jk ∈ (0, 1

n), Pik+1,jk ∈ (0, 1
n).

(46)

Since P ∈ U \ PS2
n , there exists (i1, j1) ∈ J1, nK2 such that Pi1,j1 ∈ (0, 1

n). Since 0 < Pi1,j1 <∑
i Pi,j1 = 1

n , there exists i2 ̸= i1 such that Pi2,j1 ∈ (0, 1
n). Likewise, since 0 < Pi2,j1 <

∑
j Pi2,j = 1

n ,
there exists j2 ̸= j1 such that Pi2,j2 ∈ (0, 1

n). We continue and show the existence of i3 ̸= i2 such
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that Pi3,j2 ∈ (0, 1
n). So far, we have built a chain i1 → j1 → i2 → j2 → i3. If i3 = i1 then we have

shown Eq. (46). Otherwise we continue the process up to ik, k ≥ 4 while ik ̸= i1, and there are two
exclusive possibilities:

1. The process terminates with (i1, j1, · · · , ip, jp, ip+1) such that ip+1 = i1, and by construction
the cycle verifies the conditions of Eq. (46);

2. The process continues at least up to k = n + 1, yielding (i1, j1, · · · , in, jn, in+1) verifying the
conditions of Eq. (46) except in+1 ̸= i1. Then by the pigeonhole principle, there exists k1 <
k2 ∈ J1, n+ 1K2 such that ik1 = ik2 . Consider the cycle (ik1 , jk1 , ik1+1, jk1+1, · · · , ik2), it verifies
Eq. (46) (the length is sufficient since by construction ik1 ̸= ik1+1).

Now that we have shown Eq. (46), we deduce Eq. (45) by taking p ≥ 2 minimal in Eq. (46).

As an illustration, in Fig. 11, by following the edges of GP starting from the edge (i1, j1), we observe
the cycle (i1, j1, i2, j3, i4, j4, i3, j2, i1) which satisfies the criteria of Eq. (45).

We will also require the following technical result about extracting injective cycles from (possibly)
redundant cycles in a graph. For a set S and n,m ∈ N, we say that two families (si)ni=1 ∈ Sn

and (tj)nj=1 ∈ Sn are equipotent if n = m and there exists a permutation φ ∈ Sn such that ∀i ∈
J1, nK, sφ(i) = ti. We write this property (si) ≃ (tj). This concept is particularly useful when the
families are not injective, which will sometimes be the case in the following.

Lemma 10. Let G := (V := A ∪ B, E) be a directed bipartite graph, set p ≥ 1 and consider
a cycle written (a1, b1, · · · , ap, bp, ap+1) ∈ V 2p+1 with ∀k ∈ J1, pK, (ak, bk) ∈ E, (bk, ak+1) ∈ E.
Then there exists L ≥ 1 cycles of G of the form (aℓ1, bℓ1, · · · , aℓpℓ

, bℓpℓ
, aℓpℓ+1) (with aℓ1 = aℓpℓ+1 and

each (aℓk, bℓk), (bℓk, aℓk+1) ∈ E) whose combined elements (without the last vertex) are exactly the
elements of (a1, b1, · · · , ap, bp):

(a1, b1, · · · , ap, bp) ≃ (a1
1, b

1
1, · · · , a1

p1 , b
1
p1 , · · · · · · , aL1 , bL1 , · · · , aLpL

, bLpL
), (47)

and such that for each ℓ ∈ J1, LK, the families of edges ((aℓk, bℓk))
pℓ
k=1 and ((bℓk, aℓk+1))pk=1 are

injective.

Proof. Given such a cycle C := (a1, b1, · · · , ap, bp, ap+1) we consider the two following “splitting”
operators:

• SplitR takes the first pair i < j ∈ J1, pK2 (for the lexicographic order) such that (ai, bi) = (aj , bj)
if such a pair (i, j) exists (if not, SplitR(C) returns C). SplitR(C) then returns the two following
sub-cycles:

C1 := (a1, b1, · · · , ai−1, bi−1, aj , bj , · · · , ap, bp, ap+1), C2 := (ai, bi, · · · , , aj−1, bj−1, aj).

Obviously, their concatenation without endpoints is exactly C without its endpoint:

(a1, b1, · · · , ai−1, bi−1, aj , bj , · · · , ap, bp, ai, bi, · · · , , aj−1, bj−1) ≃ (a1, b1, · · · , ap, bp).

• SplitL takes the first pair i < j ∈ J1, pK2 such that (bi, ai+1) = (bj , aj+1) if such a pair (i, j)
exists (if not, SplitL(C) returns C). SplitL(C) then returns the two following sub-cycles, (which
verify the equipotence condition):

C1 := (a1, b1, · · · , ai, bi, aj+1, bj+1, · · · , ap, bp, ap+1), C2 := (ai+1, bi+1, · · · , aj , bj , aj+1).

To split an initial C, we construct a family (Cℓ) of cycles iteratively starting with (C) by applying
SplitR and SplitL to the cycles to the family Cℓ until no cycle can be split. This process terminates
since each iteration increases the number of cycles (they are non-empty), which is bounded because C
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is finite and the concatenation of the cycles (Cℓ) without endpoints is exactly C without its endpoint.
At the end of the process, the equipotence condition remains and each cycle Cℓ has injective edges
((aℓk, bℓk))k, ((bℓk, aℓk+1))k since the splitting process could not continue.

In Fig. 12 we illustrate the splitting process of Lemma 10.

Figure 12: Extracting two cycles C1, C2 from the cycle C such that each cycle Cℓ has distinct (directed)
edges.

The cycle from Fig. 12 is a cycle of GP (where P ) is the OT plan matrix between the measures Pθ#µ
and Pθ#ν, constructed using P from Fig. 11 with a1 ∈ J1, AK where i ∈ Ia1 , then b1 ∈ J1, BK such
that j1 ∈ Ib1 and so one. This example case is paramount since it will be the use case of Lemma 10
in the proof of Theorem 3.

The following lemma is in essence a cyclical monotonicity property, and concerns a property of cycles
in the bipartite graph associated to the matrix P ∈ RA×B

+ which is the unique optimal transport
plan matrix between the one-dimensional measures Pθ#µ = ∑A

a=1
#Ia

n δsa and Pθ#ν = ∑B
b=1

#Jb
n δtb .

The idea is that by monotonicity of P , no edges of GP can cross one another, which constrains cycles
to have a left edge (b, a) corresponding to each right edge (a, b). We remind that by assumption
s1 < · · · < sA and t1 < · · · < tB (the notation was introduced in Lemma 7).

Lemma 11. Let P ∈ RA×B
+ be the OT matrix between ∑A

a=1
#Ia

n δsa and ∑B
b=1

#Jb
n δtb .

If C := (a1, b1, · · · , ap, bp, ap+1) is a cycle in GP (i.e. (ak)p+1
k=1 ∈ J1, AKp+1, (bk)pk=1 ∈

J1, BKp, ap+1 = a1 and ∀k ∈ J1, pK, P ak,bk
> 0, P ak+1,bk

> 0) such that the families of
edges ((ak, bk))pk=1 and ((bk, ak+1))pk=1 are injective, then ((ak, bk))pk=1 ≃ ((ak+1, bk))pk=1.

Proof. First, by optimality of P , by [San15] Lemma 2.8, P is monotone in the sense that:

∀(a, b), (a′, b′) ∈ J1, AK × J1, BK, such that P a,b > 0, P a′,b′ > 0, a < a′ =⇒ b ≤ b′.

Note that the contrapositive yields the symmetrical property that if b < b′ then a ≤ a′. Furthermore,
we remind that since each (ak, bk) and (bk, ak+1) are edges of the graph GP , we have P ak,bk

> 0 and
P ak+1,bk

> 0. We can understand the monotonicity property as the fact that the edges of the cycle
cannot cross one another.

By injectivity of the edge families, to show the equipotence result, it suffices to show that ∀k ∈
J1, pK, ∃k′ ∈ J1, pK such that (ak, bk) = (ak′+1, bk′). Since the vertices ak and bk are part of the cycle
a1 → b1 → a2 → · · · → ap+1 = a1, there exists a sub-cycle bk → a′

1 → b′
1 → · · · → b′

q → ak, which
is to say that there exists, for some q ≥ 0, (bk, a′

1) ∈ C, ∀k′ ∈ J1, qK, (a′
k′ , b′

k′) ∈ C, (b′
k′ , a′

k′+1) ∈ C
(writing a′

q+1 := ak), and we now take q ≥ 0 minimal. We will show that q = 0 by contradiction:
assume q ≥ 1, which implies that a′

1 ̸= ak by minimality. Assume that a′
1 < ak (the case a′

1 > ak
is analogous). By monotonicity of P , we deduce b′

1 ≤ bk, and even b′
1 < bk since b′

1 = bk would
violate the minimality of q. By monotonicity, we deduce that a′

2 ≤ a′
1 and again, even a′

2 < a′
1

by minimality of a. Continuing this process we find that a′
q+1 < ak contradicting a′

q+1 = ak. We
conclude that the edge (bk, ak) belongs to the cycle, which is to say that there exists k′ ∈ J1, pK such
that (ak, bk) = (ak′+1, bk′), finishing the proof.
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In Fig. 13 we illustrate the result of Lemma 11 in the use case of the proof of Theorem 3, regrouping
the continued example from Figs. 9 to 12.

Figure 13: We take two discrete uniform measures µ := 1
n

∑
i δxi and ν := 1

n

∑
j δyj such that

s1 := Pθx1 = Pθx2 < s2 := Pθx3 = Pθx4 and t1 := Pθy1 = Pθy2 = Pθy3 < t2 := Pθy4. We
represent the OT matrix P between the measures Pθ#µ and Pθ#ν and consider the bipartite graph
GP associated to a coupling P ∈ U ∩ Pθ(X,Y ) (presented in Fig. 11). In this case the graph GP
(top-right) contains the cycle C := (i1, j1, i2, j3, i4, j4, i3, j2, i1). We consider for each k the “right”
edge (ak, bk) in GP such that ik ∈ Iak

and jk ∈ Jbk
, and the “left” edge (bk, ak+1) such that jk ∈ Jbk

and ik+1 ∈ Iak+1 . This defines the cycle C in GP , that we decompose into cycles with distinct edges
(Cℓ) using Lemma 10. Lemma 11 then applies to each Cℓ and we observe indeed that in Cℓ, each
“left” edge (b, a) has a corresponding “right” edge (a, b) in the cycle.

5.5 A Constrained Version of the Birkhoff von Neumann Theorem

We are now ready to prove a constrained version of the Birkhoff von Neumann Theorem [Bir46]. We
remind that Pθ(X,Y ) is defined in Eq. (42), U in Eq. (41) and PSθ(X,Y ) = {P σ,τ , (σ, τ) ∈ Sθ(X,Y )},
with P σ,τ the permutation matrix introduced in Eq. (43) and Sθ(X,Y ) defined in Eq. (36). Finally,
the notion of extreme points is defined in Definition 5.

Theorem 3. Let (X,Y ) ∈ Rn×d and θ ∈ Sd−1 verifying Assumption 1. Then

Extr(U ∩ Pθ(X,Y )) = PSθ(X,Y ).

Proof. — Step 1 : PSθ(X,Y ) ⊂ Extr(U ∩ Pθ(X,Y ))

First, for (σ, τ) ∈ Sθ(X,Y ), we have P σ,τ ∈ Pθ(X,Y ) by Lemma 8, which shows that P σ,τ ∈
U ∩ Pθ(X,Y ). Now if P σ,τ = 1

2Q+ 1
2R for some (Q,R) ∈ U ∩ Pθ(X,Y ), then for any (i, j) ∈ J1, nK2,

we have P σ,τi,j ∈ {0, 1
n}, thus 1

2Qi,j + 1
2Ri,j = P σ,τi,j implies that Qi,j = Ri,j since Qi,j and Ri,j are both

in [0, 1
n ] (since they belong to U). This shows that P σ,τ ∈ Extr(U ∩ Pθ(X,Y )).

— Step 2 : Writing P ∈ (U ∩ Pθ(X,Y )) \ PSθ(X,Y ) as P = (Q+R)/2 with Q,R ∈ [0, 1
n ]n×n

To show Extr(U ∩ Pθ(X,Y )) ⊂ PSθ(X,Y ), we will show that

(U ∩ Pθ(X,Y )) \ PSθ(X,Y ) ⊂ (U ∩ Pθ(X,Y )) \ Extr(U ∩ Pθ(X,Y )).
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Note that when n = 1 the entire Theorem is trivial, and in the following we assume n ≥ 2. We take
P ∈ (U∩Pθ(X,Y ))\PSθ(X,Y ) and apply Lemma 9, allowing us to introduce (i1, j1, · · · , ip, jp, ip+1) ∈
J1, nK2p+1 such that ip+1 = i1, the families (ik)pk=1 and (jk)pk=1 are injective and ∀k ∈ J1, pK, Pik,jk ∈
(0, 1

n), Pik+1,jk ∈ (0, 1
n). We consider the set of “right edges” ER := ((ik, jk))pk=1 and “left edges”:

EL := ((ik+1, jk))pk=1. By injectivity, we have ER ∩ EL = ∅ and that ER and EL are themselves
injective. Note that our cycle construction is illustrated on an example in Fig. 13. We take the
smallest margin ε > 0 that P has to be in U (within the cycle):

ε := min
k∈J1,pK

{Pik,jk , 1 − Pik,jk , Pik+1,jk , 1 − Pik+1,jk} ∈ (0, 1
n),

and introduce the matrices Q,R ∈ Rn×n defined as, for (i, j) ∈ J1, nK2:

Qi,j :=


Pi,j if (i, j) /∈ ER ∪ EL

Pi,j + ε if (i, j) ∈ ER
Pi,j − ε if (i, j) ∈ EL

, Ri,j :=


Pi,j if (i, j) /∈ ER ∪ EL

Pi,j − ε if (i, j) ∈ ER
Pi,j + ε if (i, j) ∈ EL

.

For visualisation purposes, in the example of Fig. 13, we represent “left” edges of the cycle in blue (on
these edges, we add +ε in Q and −ε in R) and “right” edges in red (on which we do the opposite).
By definition of ε, we have Q,R ∈ [0, 1

n ]n×n. By construction, we also have P = 1
2(Q+R).

— Step 3 : Showing that Q,R ∈ U

Fix j ∈ J1, nK, we show that ∑iQi,j = 1
n . Since EL and ER are injective and disjoint, we compute

n∑
i=1

Qi,j =
∑

i:(i,j)̸∈ER∪EL

Pi,j +
∑

i:(i,j)∈ER

(Pi,j + ε) +
∑

i:(i,j)∈EL

(Pi,j − ε) = 1
n

+ ε(#IR(j) − #IL(j)),

where IR(j) := {i ∈ J1, nK : (i, j) ∈ ER} and IL(j) := {i ∈ J1, nK : (i, j) ∈ EL}. Since ER and EL are
injective, we deduce that IR and IL are also injective. Take i ∈ IR(j) and write (i, j) = (ik, jk) ∈ EL
for some k ∈ J1, pK. We notice that (ik, jk−1) ∈ ER where if k = 1 we write jk−1 := jp. We conclude
that #IR(j) = #IL(j) and thus that ∑iQi,j = 1

n . The same reasoning shows that ∑j Qi,j = 1
n for

all i ∈ J1, nK, and we conclude that Q ∈ U. The same computations show that R ∈ U as well.

— Step 4 : Showing that Q,R ∈ Pθ(X,Y )

We now show that Q,R ∈ Pθ(X,Y ) using the definition (Eq. (42)). Take (a, b) ∈ J1, AK × J1, BK. We
have: ∑

(i,j)∈Ia×Jb

Qi,j =
∑

(i,j)∈(Ia×Jb)∩Ec
R∩Ec

L

Pi,j +
∑

(i,j)∈(Ia×Jb)∩ER

(Pi,j + ε) +
∑

(i,j)∈(Ia×Jb)∩EL

(Pi,j − ε)

=
#Ia ∩ Jb

n
+ ε (#((Ia × Jb) ∩ ER) − #((Ia × Jb) ∩ EL)) . (48)

Let P ∈ RA×B
+ be the OT matrix between ∑A

a=1
#Ia

n δsa and ∑B
b=1

#Jb
n δtb . Consider the family

C := (a1, b1, · · · , ap, bp, ap+1) defined by the condition ∀k ∈ J1, pK, ik ∈ Iak
, jk ∈ Jbk

and ap+1 := a1.
Since C := (i1, i2, · · · , ip, jp, ip+1) is a cycle in GP , it follows that C is a cycle in GP since the condition
P ∈ Pθ(X,Y ) implies:

∀(a, b) ∈ J1, AK × J1, BK,
∑

(i,j)∈Ia×Jb

Pi,j = P a,b,

thus if Pi,j > 0 for some (i, j) ∈ Ia × Jb then Pa,b > 0. See also Fig. 13 for an example. We now
apply Lemma 10 to show that C is the “concatenation” of L ≥ 1 cycles Cℓ of GP of the form:

Cℓ := (aℓ1, bℓ1, · · · , aℓpℓ
, bℓpℓ

, aℓpℓ+1),

where “concatenation” means that Eq. (47) holds with the same notation, and where each Cℓ is such
that the edge families ((aℓk, bℓk))

pℓ
k=1 and ((bℓk, aℓk+1))pℓ

k=1 are injective. For each ℓ ∈ J1, LK, we apply
Lemma 11, which shows in particular that for any (a, b) ∈ J1, AK × J1, BK:

#
{
k ∈ J1, pℓK : (aℓk, bℓk) = (a, b)

}
= #

{
k ∈ J1, pℓK : (aℓk+1, b

ℓ
k) = (a, b)

}
. (49)
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We understand Eq. (49) as the fact that for any left edge from group a to group b in Cℓ, there
corresponds exactly as many right edges from group b to group a. This will allow us to show that
the terms in +ε and −ε are in the same number. We now re-write the sets from the condition on Q
(Eq. (48)) for a fixed (a, b) ∈ J1, AK × J1, BK:

# ((Ia × Jb) ∩ ER) = {(ik, jk), k ∈ J1, pK, (ik, jk) ∈ Ia × Jb}
= # ((ak, bk), k ∈ J1, pK, (ak, bk) = (a, b))

=
L∑
ℓ=1

#
(
(aℓk, bℓk), k ∈ J1, pℓK, (aℓk, bℓk) = (a, b)

)

=
L∑
ℓ=1

#
(
(bℓk, aℓk+1), k ∈ J1, pℓK, (aℓk+1, b

ℓ
k) = (a, b)

)
= # ((Ia × Jb) ∩ EL) ,

where the first equality uses the definition of ER, the second inequality comes from associating to
each pair (ik, jk) its group pair (ak, bk) and counting the group pairs with repetition, the third equality
the concatenation property of the cycles Cℓ (Eq. (47)), the fourth equality from Eq. (49) and the last
inequality from the definition of EL (doing the same computations as for ER in reverse order).

Combining with Eq. (48) shows that ∑(i,j)∈Ia×Jb
Qi,j = #(Ia∩Jb)

n and thus that Q ∈ Pθ(X,Y ).
Likewise we show R ∈ Pθ(X,Y ) and thus we have found Q,R ∈ U∩Pθ(X,Y ) such that P = 1

2(Q+R),
and we conclude that P does not belong to Extr(U ∩ Pθ(X,Y )), finishing the proof.

From Theorem 3 we deduce the following theorem, which is a Monge formulation of the constrained
Kantorovich problem in CWθ:

Theorem 4. Let (X,Y ) ∈ Rn×d and θ ∈ Sd−1, we have:

CW2
θ

 1
n

n∑
i=1

δxi ,
1
n

n∑
j=1

δyj

 = min
(σ,τ)∈Sθ(X,Y )

1
n

n∑
i=1

∥xσ(i) − yτ(i)∥2
2, (50)

Proof. Beginning under Assumption 1, we combine Theorem 3 with the expression of CW2
θ from

Proposition 9:

CW2
θ

 1
n

n∑
i=1

δxi ,
1
n

n∑
j=1

δyj

 = min
P∈U∩Pθ(X,Y )

∑
i,j

∥xi − yj∥2
2Pi,j = min

P∈Extr(U∩Pθ(X,Y ))

∑
i,j

∥xi − yj∥2
2Pi,j ,

since the solution of a linear program over a non-empty convex compact set is attained at an ex-
treme point ([BT97] Theorem 2.7), and we conclude that the expression in Eq. (50) holds thanks to
Theorem 3. For the general case without Assumption 1, we use Lemma 6.

6 Min-Pivot Sliced

6.1 Min-Pivot Sliced Discrepancy: Definition

A specificity of the Pivot Sliced Wasserstein discrepancy is the dependence on the axis θ ∈ Sd−1,
which can overly constrain the choice of transport plans. In this section, we study the Min-Sliced
min-pivot sliced Discrepancy which minimises PSθ over θ ∈ Sd−1. This object was first introduced
in [Mah+23] on the set of discrete uniform measures with n points.

min PS2(µ1, µ2) := min
θ∈Sd−1

PS2
θ(µ1, µ2) = min

θ∈Sd−1

ω∈Ωθ(µ1,µ2)

ˆ
R2d

∥x1 − x2∥2
2dω(x1, x2), (51)
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where we used the notation Ωθ(µ1, µ2) defined in Eq. (32), and Theorem 2. We show below that the
infimum is attained:

Proposition 10. Let µ1, µ2 ∈ P2(Rd). Then the minimum in Eq. (51) is attained.

Proof. Take a sequence (θn)n∈N ∈ Sd−1 such that PSθn(µ1, µ2) −−−−−→
n−→+∞

min PS(µ1, µ2). By com-
pactness of Sd−1, we can extract a converging subsequence of (θn): up to extraction we can assume
that θn −−−−−→

n−→+∞
θ ∈ Sd−1. Denoting µθn := µθn [µ1, µ2], by Proposition 1, for each n ∈ N we can

choose ρn ∈ Γ(µθn , µ1, µ2) optimal for PSθn(µ1, µ2). By Proposition 6, we have µθn = w−−−−−→
n−→+∞

µθ.

Using Lemma 1 item 1) we obtain that the set of Γ({µθn}, µ1, µ2) is tight in P2(R3d), and since
(ρn) ∈ Γ({µθn}, µ1, µ2)N, there exists an extraction α such that ρα(n)

w−−−−−→
n−→+∞

ρ ∈ P2(R3d). Apply-
ing Lemma 1 item 2) shows that ρ ∈ Γ(µθ, µ1, µ2).

The cost function J := ρ ∈ P2(R3d) 7−→
´
R3d ∥x1 − x2∥2

2dρ1,2(y, x1, x2) is lower semi-continuous by
[San15] Lemma 1.6, which provides the following inequality:

PS2
θ(µ1, µ2) ≤ J(ρ) ≤ lim inf

n−→+∞
J(ρα(n)) = lim

n−→+∞
S2
θα(n)

(µ1, µ2) = min PS2(µ1, µ2),

where the first inequality holds by the property ρ ∈ Γ(µθ, µ1, µ2), the second inequality comes from
the lower semi-continuity of J and the first equality comes from the fact that ∀n ∈ N, J(ρn) =
PS2

θn
(µ1, µ2). We conclude that min PS(µ1, µ2) = PSθ(µ1, µ2) and thus the infimum is attained.

From Proposition 10, we conclude that the properties of PSθ stated in Proposition 5 are inherited by
min PS. In Example 5, we show an example which numerically contradicts the triangle inequality.

Example 5 (min PS does not verify the triangle inequality). We consider a setting with three
measures µ1, µ2, µ3 ∈ P(R2) with 10 points each, obtained with five rotations of the example
from Example 3, which we represent in Fig. 14. Extensive numerical approximation with
L := 105 directions yields the following violation of the triangle inequality:

min PS(µ1, µ3) + min PS(µ3, µ2) − min PS(µ1, µ2) ≈ −0.612.

While the expression are not tractable in closed form, this numerical experiment strongly sug-
gests that the triangle inequality does not hold for min PS.

6.2 Equality with the Wasserstein Distance for Certain Discrete Measures

In [Mah+23] (Proposition 3.2), the authors show (proof in [Mah+23] Section 11.1) that the Min-
Sliced Discrepancy min PS equals W2 on the set Pn(Rd) of uniform discrete measures with n points
under a condition on n and d. Their proof relies on an application of [Cov67] which requires the
points to be in general position (see Definition 7), however the condition is not stated in [Mah+23].
For the sake of clarity, we restate the result and provide a detailed proof. First, we remind the notion
of points of Rd in general position in Definition 7.

Definition 7. Let x1, · · · , xn ∈ Rd. We say that the points are in general position if for all
k ∈ J1, dK, there is no subset I ⊂ J1, nK with k + 2 elements such that {xi}i∈I is contained in a
k-dimensional affine subspace of Rd.

Proposition 11. Let µ := 1
n

∑n
i=1 δxi and ν := 1

n

∑n
i=1 δyi such that the union of supports
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1

2

3
origin

Figure 14: Counter-example from Example 5 to the triangle inequality for min PS.

(xi) ∪ (yj) is in general position. If 2n ≤ d+ 1, then:{
(σ, τ) ∈ S2

n : ∃θ ∈ Sd−1 : ∀i ∈ J1, n− 1K, Pθxσ(i) < Pθxσ(i+1), Pθyτ(i) < Pθyτ(i+1)
}

= S2
n.

(52)
As a result, min PS(µ, ν) = W2(µ, ν).

Proof. By the Theorem in [Cov67] Section 2 and Equation (12) in Section 3, since (x1, · · · , xn, y1, · · · , yn)
are in general position and d ≥ 2n− 1, we have{

α ∈ S2n : ∃θ ∈ Sd−1 : ∀k ∈ J1, 2n− 1K, Pθzα(i) < Pθzα(i+1)
}

= S2n, (53)

where (z1, · · · , z2n) := (x1, · · · , xn, y1, · · · , yn). Take now (σ, τ) ∈ S2
n and define α ∈ S2n by:

∀i ∈ J1, nK, α(i) := σ(i), ∀j ∈ J1, nK, α(n+ j) := τ(j).

By Eq. (53), there exists θ ∈ Sd−1 such that ∀k ∈ J1, 2n− 1K, Pθzα(i) < Pθzα(i+1), showing Eq. (52).

Now by definition of Sθ(X,Y ), the RHS term of Eq. (52) is a subset of ∪θ∈Sd−1Sθ(X,Y ), which
shows that ∪θ∈Sd−1Sθ(X,Y ) = S2

n. Using Theorem 2 and Theorem 4 we conclude:

min PS(µ, ν) = min
(σ,τ)∈∪

θ∈Sd−1Sθ(X,Y )

1
n

n∑
i=1

∥xσ(i) − yτ(i)∥2
2 = min

(σ,τ)∈S2
n

1
n

n∑
i=1

∥xσ(i) − yτ(i)∥2
2 = W2

2(µ, ν),

where the last equality comes from the Monge formulation of W2 in the case of uniform measures
with the same number of points (see [PC19] Proposition 2.1 for instance).

7 Expected Sliced Wasserstein

In [Liu+24], Liu et al. present a variant of the Sliced Wasserstein distance, consisting in taking the
transport cost of a coupling that is an average of lifted sliced couplings. In this section, we will
explain how to define these notions for general measures of P2(Rd) instead of discrete measures ones.
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7.1 Lifting Sliced Plans

To lift a 1D transport plan onto Rd, we will require the notion of disintegration of measures with
respect to a map reminded in Section 2.4. Let µ1, µ2 ∈ P2(Rd) and θ ∈ Sd−1. Consider the disinte-
gration of µ1 with respect to Pθ := x 7−→ x ·θ as in Definition 10: µ1(dx) = (Pθ#µ1)(Pθdx)µPθx

1 (dx).
The kernel µPθx1 is a measure on Rd supported on the slice {x′ ∈ Rd | x′ · θ = x · θ} = x + θ⊥.
Denoting similarly the disintegration of µ2 by µ2(dy) = (Pθ#µ2)(Pθdy)µPθy

2 (dy), we first notice that
the disintegration of µ1 ⊗ µ2 with respect to (Pθ, Pθ) writes simply as a product:

µ1 ⊗ µ2(dx,dy) = (Pθ#µ1)(Pθdx)(Pθ#µ2)(Pθdy)µPθx
1 (dx)µPθy

2 (dy), (54)

noticing that (Pθ, Pθ)#(µ1 ⊗ µ2) = (Pθ#µ1) ⊗ (Pθ#µ2).

Take now the 1D OT plan πθ := πθ[µ1, µ2] ∈ Π∗(Pθ#µ1, Pθ#µ2), the idea behind the lift is to replace
the independent coupling (Pθ, Pθ)#(µ1 ⊗ µ2) = (Pθ#µ1) ⊗ (Pθ#µ2) in Eq. (54) by πθ: we define the
lifted plan through its disintegration as:

γθ(dx, dy) := πθ(Pθdx, Pθdy)µPθx
1 (dx)µPθy

2 (dy). (55)

More formally, we can define γθ using test functions ϕ ∈ C0
b (Rd × Rd):

ˆ
R2d

ϕ(x, y)dγθ(x, y) =
ˆ
R2

(ˆ
P−1

θ
(s)×P−1

θ
(t)
ϕ(x, y)dµs1(x)dµt2(y)

)
dπθ(s, t). (56)

We illustrate the definition of the lifted plan on a simple example in Fig. 15.

Figure 15: Example of the lifted plan γθ between two measures µ1 and µ2. In this case, we notice
that Pθx1 = Pθx2 and Pθy2 = Pθy3. As a result, the optimal plan πθ between Pθ#µ1 and Pθ#µ2 does
not allow us to deduce an assignment between (x1, x2) and (y2, y3). The lifted coupling γθ chooses
the independent coupling: x1 is assigned uniformly to (y2, y3) and likewise for x2. As for x3 and y1,
the coupling πθ assigns Pθx3 to Pθy1 which imposes that γθ send x3 to y1.

In Proposition 12 we show that the lifted plan is a valid coupling between µ1 and µ2. We also provide
an explicit expression for discrete measures µ1, µ2, which coincides with the expression in [Liu+24]
Equation 9, which serves as their definition of lifted plans.

Proposition 12. Let µ1, µ2 ∈ P2(Rd), θ ∈ Sd−1 and γθ := γθ[µ1, µ2] the lifted plan defined in
Eq. (56). Then:

1. γθ ∈ Π(µ1, µ2).
2. If µ1 = ∑n

i=1 aiδxi and µ2 = ∑m
j=1 bjδyj , let πθ ∈ Π∗(Pθ#µ1, Pθ#µ2). For (i, j) ∈ J1, nK ×
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J1,mK, we define Qi,j := πθ({(Pθxi, Pθyj)}), which allows us to see πθ as a matrix of size
n×m.

γθ =
n∑
i=1

m∑
j=1

aibj

AiBj
Qi,jδ(xi,yj), Ai :=

∑
i′:xi′ ·θ=xi·θ

ai′ , Bj :=
∑

j′:yj′ ·θ=yj ·θ
bj′ . (57)

Proof. For 1. we verify the property using a test function ϕ ∈ C0
b (Rd) with Eq. (56):

ˆ
R2d

ϕ(x)dγθ(x, y) =
ˆ
R2

(ˆ
P−1

θ
(s)×P−1

θ
(t)
ϕ(x)dµs1(x)dµt2(y)

)
dπθ(s, t)

=
ˆ
R2

(ˆ
P−1

θ
(s)
ϕ(x)dµs1(x)

)(ˆ
P−1

θ
(t)

dµt2(y)
)

︸ ︷︷ ︸
=1

dπθ(s, t)

=
ˆ
R

(ˆ
P−1

θ
(s)
ϕ(x)dµs1(x)

)
d(Pθ#µ1)(s)

=
ˆ
Rd

ϕ(x)dµ1(x),

where we use the fact that the first marginal of πθ is Pθ#µ1, and then used disintegration of µ1
with respect to Pθ. The same method shows that the second marginal of γθ is µ2, concluding
γθ ∈ Π(µ1, µ2).

For 2. we begin by writing explicitly the disintegration of µ1 with respect to Pθ. For µ1 = ∑n
i=1 aiδxi ,

we have Pθ#µ = ∑
i aiδPθxi , and for s = Pθxi ∈ supp(Pθ#µ), we have µs1 = A−1

i

∑
i′:x′

i·θ=s ai′δxi′ .
We establish Eq. (57) by testing on ϕ ∈ C0

b (R2d). The support of πθ is (at most) the family of pairs
((xi · θ, yj · θ))i,j . We choose I ⊂ J1, nK × J1,mK such that the support of πθ is the injective family
((xi · θ, yj · θ))(i,j)∈I . We then have:

ˆ
R2d

ϕ(x, y)dγθ(x, y) =
ˆ
R2

(ˆ
P−1

θ
(s)×P−1

θ
(t)
ϕ(x, y)dµs1(x)dµt2(y)

)
dπθ(s, t)

=
∑

(i,j)∈I

( ∑
i′:Pθxi′ =Pθxi

j′:Pθyj′ =Pθyj

ϕ(xi′ , yj′)
ai′bj′

AiBj

)
πθ({(Pθxi, Pθyj)})

=
n∑
i=1

m∑
j=1

ϕ(xi, yj)
aibj

AiBj
Qi,j ,

where we use the fact that for (i, j) ∈ I and (i′, j′) such that Pθxi′ = Pθxi and Pθyj′ = Pθyj , it holds
that Ai = Ai′ , Bj = Bj′ and Qi,j = Qi′,j′ .

The discrete expression in Eq. (57) shows that the definition of listed plans in Eq. (56) is a general-
isation of the plan lift from [Liu+24] (Equation 9). We now study the transport cost associated to
the lifted plan γθ:

Definition 8. For θ ∈ Sd−1 and µ1, µ2 ∈ P2(Rd). With γθ[µ1, µ2] the lifted plan defined in
Eq. (56), we define the lifted cost as:

LS2
θ(µ1, µ2) :=

ˆ
R2d

∥x1 − x2∥2
2dγθ[µ1, µ2](x1, x2).

We will see that LSθ defines a discrepancy on P2(Rd) that is almost a distance.
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Proposition 13. Fix θ ∈ Sd−1. The quantity LSθ is non-negative, symmetric, verifies the
triangle inequality, and if µ1, µ2 ∈ P2(Rd) verify LSθ(µ1, µ2) = 0 then µ1 = µ2. Furthermore,
we have the inequality LSθ ≥ W2.

Proof. Non-negativity and symmetry are immediate. For µ1, µ2 ∈ P2(Rd), by Proposition 12, we
have γθ[µ1, µ2] ∈ Π(µ1, µ2), hence LSθ(µ1, µ2) ≥ W2(µ1, µ2). Suppose now that µ1, µ2 ∈ P2(Rd) are
such that LSθ(µ1, µ2) = 0, then W2(µ1, µ2) = 0 and therefore µ1 = µ2.

We now show the triangle inequality: let µ1, µ2, µ3 ∈ P2(Rd). We consider the sliced 3-plan ηθ defined
by:

ηθ :=
(
F

[−1]
Pθ#µ1

, F
[−1]
Pθ#µ2

, F
[−1]
Pθ#µ3

)
#L[0,1].

For i < j ∈ {1, 2, 3}, introduce π(i,j)
θ the unique optimal transport plan between Pθ#µi and Pθ#µj .

By [San15] Theorem 2.9, we see that [ηθ]i,j = π
(i,j)
θ . We now lift the sliced plan ηθ in the same

manner as in Eq. (56), defining a plan ρθ ∈ P2(R3d) by disintegration:

ρθ(dx1, dx2, dx3) := ηθ(Pθdx1, Pθdx2, Pθdx3)µPθx1
1 (dx1)µPθx2

2 (dx2)µPθx3
3 (dx3).

By computing the expectation against test functions, ∀i < j ∈ {1, 2, 3}, [ρθ]i,j = γθ[µi, µj ]. We now
use the classical gluing method (as in [San15] Lemma 5.5) to show the triangle inequality, introducing
the functions ϕi := (x1, x2, x3) 7−→ xi for i ∈ {1, 2, 3}:

LSθ(µ1, µ3) =
√ˆ

R2d

∥x1 − x3∥2
2dγθ[µ1, µ3](x1, x3)

=
√ˆ

R3d

∥x1 − x3∥2
2dρθ(x1, x2, x3)

= ∥ϕ1 − ϕ3∥L2(ρθ)

≤ ∥ϕ1 − ϕ2∥L2(ρθ) + ∥ϕ2 − ϕ3∥L2(ρθ)

=
√ˆ

R2d

∥x1 − x2∥2
2dγθ[µ1, µ2](x1, x2) +

√ˆ
R2d

∥x2 − x3∥2
2dγθ[µ2, µ3](x1, x2)

= LSθ(µ1, µ2) + LSθ(µ2, µ3).

The discrepancy LSθ is not a distance on P2(Rd): in Example 6, we introduce a particular case in
dimension two where LSθ(µ, µ) > 0.

Example 6 (LSθ(µ, µ) can be non-zero). Take θ := (1, 0) and µ := 1
2(δx0 + δx1), x0 :=

(0, 0), x1 := (0, 1). We have Pθ#µ = δ0 and thus γθ[µ, µ] = µ⊗ µ. The lifted cost is then:

LS2
θ(µ, µ) =

1
4
(
∥x0 − x0∥2

2 + ∥x0 − x1∥2
2 + ∥x1 − x0∥2

2 + ∥x1 − x1∥2
2

)
=

1
2 > 0.

For probability measures µ with countable support, for almost-every θ ∈ Sd−1, there is no ambiguity
in the projections, and thus LSθ(µ, µ) = 0, as shown in Proposition 14. To state the result, we
introduce the following notation for the set of probability measures with countable3 support:

PDC(Rd) :=
{
µ =

∑
x∈X

axδx : X ⊂ Rd countable, (ax)x∈X ∈ (0, 1]d,
∑
x∈X

ax = 1
}
. (58)

3by “countable", we mean a set that is either finite or equipotent to N.
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Proposition 14. Consider µ ∈ PDC(Rd), then for almost-every θ ∈ Sd−1, we have LSθ(µ, µ) =
0.

Proof. Denoting σu the uniform measure on the unit sphere Sd−1, we have by countable additivity
Pθ∼σu(∃x ̸= y ∈ X2 : Pθx = Pθy) ≤

∑
x ̸=y∈X2 σu((x − y)⊥) = 0. We now fix Θ ⊂ Sd−1 the set

Θ := {θ ∈ Sd−1 : ∀x ̸= y ∈ X2, θ ̸∈ (x− y)⊥}, we have shown that σu(Θ) = 1. For θ ∈ Θ, the family
(Pθx)x∈X is injective, and the disintegration kernel µ with respect to Pθ at Pθx is simply δQ

θ⊥x,
therefore the lifted plan γθ[µ, µ] is ∑x∈X axδ(x,x). It follows from the definition that LSθ(µ, µ) = 0
for any θ ∈ Θ, concluding the proof.

7.2 Averaging Lifted Plans

Let µ1, µ2 ∈ P2(Rd) and θ ∈ Sd−1. We have constructed a lifted plan γθ ∈ Π(µ1, µ2) (see Eq. (56)
and Proposition 12). We now define the expected lifted plan as the “average” of lifted plans over all
directions θ ∈ Sd−1 through a probability measure σ ∈ P(Sd−1). We define γ[µ1, µ2,σ] by duality on
test functions ϕ ∈ C0

b (Rd × Rd):
ˆ
R2d

ϕ(x, y)dγ[µ1, µ2, σ](x, y) :=
ˆ
Sd−1

ˆ
R2d

ϕ(x, y)dγθ[µ1, µ2](x, y)dσ(θ). (59)

Having defined the expected lifted plan, we can now define the expected sliced discrepancy:

Definition 9. Let µ1, µ2 ∈ P2(Rd) and σ ∈ P(Sd−1). The expected sliced discrepancy between
µ1 and µ2 is defined as:

ES2
σ(µ1, µ2) :=

ˆ
R2d

∥x− y∥2
2dγ[µ1, µ2,σ](x, y)

=
ˆ
Sd−1

ˆ
R2d

∥x− y∥2
2dγθ[µ1, µ2](x, y)dσ(θ)

=
ˆ
Sd−1

LS2
θ(µ1, µ2)dσ(θ).

where γ[µ1, µ2, σ] is the expected lifted plan between µ1 and µ2 for the measure σ on Sd−1,
defined in Eq. (59), and γθ[µ1, µ2] is the lifted plan defined in Eq. (56).

The properties of LSθ are passed on to ESσ by integration.

Corollary 2. For any probability measure σ on Sd−1, the quantity ESσ is non-negative, sym-
metric, verifies the triangle inequality, and if µ1, µ2 ∈ P2(Rd) verify ESσ(µ1, µ2) = 0 then
µ1 = µ2. Furthermore, we have the inequality ESσ ≥ W2.

Proof. Non-negativity, symmetry and the property ESσ ≥ W2 are immediate by applying the defini-
tion and Proposition 13. For the triangle inequality, let µ1, µ2, µ3 ∈ P2(Rd) and for i < j ∈ {1, 2, 3},
introduce fi,j := θ 7−→ LSθ(µi, µj). By Proposition 13 we have 0 ≤ f1,3 ≤ f1,2 + f2,3. We write:

ESσ(µ1, µ3) = ∥f1,3∥L2(σ) ≤ ∥f1,2 + f2,3∥L2(σ) ≤ ∥f1,2∥L2(σ) + ∥f2,3∥L2(σ) = ESσ(µ1, µ2) + ESσ(µ2, µ3).

The discrepancy ESσ is not a distance on P2(Rd). First, if d = 2 and σ = δ(1,0), ESσ = LSθ and the
counter-example from Example 6 earlier with µ := 1

2δ(0,0) + 1
2δ(0,1) yields ESσ(µ, µ) > 0.

Even for probability measures σ that are absolutely continuous with respect to the uniform measure
on Sd−1, we can find examples where ESσ(µ, µ) > 0, as presented in Example 7.
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Example 7 (Case where ESσ(µ, µ) > 0 for any σ). Take σ any probability measure on S1

and µ := U(BR2(0, 1)) the uniform measure on the Euclidean unit ball of R2. We have
for any θ ∈ S1, Pθµ = ν, where ν(dt) = 2

√
1−t2
π 1[−1,1](t)dt. The disintegration of µ with

respect to Pθ is covariant with respect to θ, and the disintegration kernel at t = Pθx is
µt = U

({
tθ + vθ⊥, v ∈ [−

√
1 − t2,

√
1 − t2]

})
, where we have fixed θ⊥ a unit orthogonal vector

to θ. The disintegration kernel µt is the uniform measure on the ball slice of BR2(0, 1)∩(tθ+θ⊥)
(with θ⊥ := {x ∈ Rd : θ ·x = 0}), and can simply be understood as the uniform measure on the
segment [−

√
1 − t2,

√
1 − t2], cast into R2. The optimal transport plan between ν and itself is

πθ := (I, I)#ν, and it follows that the lifted plan between µ and itself is (denoting t := Pθx1
for legibility):

γθ(dx1,dx2) = δPθx1=Pθx2(dPθx1,dPθx2) ν(dPθx1)

⊗ U
({

(tθ + v1θ⊥, tθ + v2θ⊥), (v1, v2) ∈ [−
√

1 − t2,
√

1 − t2]2
})

(dx1,dx2).

We provide a visualisation of the disintegration µt and the coupling γθ in Fig. 16.
By symmetry LSθ(µ, µ) does not depend on θ, we compute it for θ := (1, 0):

LS2
θ(µ, µ) =

ˆ
R3

∥(u, v1) − (u, v2)∥2
21[−1,1](u)

2
√

1 − u2

π
1[−

√
1−u2,

√
1−u2]2(v1, v2)

(
1

2
√

1 − u2

)2

dv1dv2du

=
ˆ u=1

u=−1

√
1 − u2

2π

ˆ v1=
√

1−u2

v1=−
√

1−u2

ˆ v2=
√

1−u2

v2=−
√

1−u2
(v1 − v2)2dv1dv2du

=
5π
12 > 0.

We conclude that ESσ(µ, µ) > 0 (for any σ), and thus ESσ is not a distance on P2(Rd).

Figure 16: Illustration of the lifted plan γθ from Example 7 between µ the uniform measure on the unit
Euclidean ball of R2, and itself. The plan is defined by disintegration: the coupling between Pθ#µ
and Pθ#µ is simply (I, I), the coupling induced by the identity map. As for the orthogonal part,
the disintegration kernel of µ at tθ is µt, the uniform measure on the ball slice BR2(0, 1) ∩ (tθ+ θ⊥),
represented as a thick red vertical line. The lifted plan couples the disintegration kernel µt with
itself with the independent coupling: writing γt,tθ as the disintegration kernel of γθ at (t, t) ∈ [−1, 1]2,
we have γ(t,t)

θ = µt ⊗ µt, which corresponds to the uniform measure on the square {(tθ + v1θ⊥, tθ +
v2θ⊥), (v1, v2) ∈ [−

√
1 − t2,

√
1 − t2]2} ⊂ R4.

Using Proposition 14, we can show that the expected sliced distance is a distance on the set of
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“countably discrete” probability measures defined in Eq. (58).

Corollary 3. For any σ a probability measure on Sd−1 that is absolutely continuous with
respect to σu, the quantity ESσ is a distance on PDC(Rd).

Proof. Thanks to Corollary 2, the only axiom to verify to show that ESσ is a distance on PDC(Rd)
is to show that ∀µ ∈ PDC(Rd), ESσ(µ, µ) = 0. We now fix µ ∈ PDC(Rd). Since σ ≪ σu, we
have by Proposition 14 that for σ-almost-every θ ∈ Sd−1, LSθ(µ, µ) = 0. We conclude ES2

σ(µ, µ) =´
Sd−1 LS2

θ(µ, µ)dσ(θ) = 0.

8 Numerics
In this section, we evaluate the efficiency and practicability of the sliced-based transport plans, namely
min-Pivot Sliced Wasserstein (min PS) and expected Sliced Wasserstein (ES), in both synthetic and
real-world scenarios. We begin by presenting quantitative and qualitative results on toy datasets,
evaluating their ability to generate meaningful transport plans and costs across various settings. We
continue with a colour transfer task, which is simple to assess qualitatively yet can be computationally
challenging in classic OT due to the large sample size (n ≥ 5002). We finish with a more complex task
that involves large-scale datasets where a transport plan is required, namely point cloud registration.
For these experiments, we employ the POT toolbox [Fla+21]. Note that we report experimental
results only in the context of distributions with the same number of samples but that the results can
be easily extended to the case of different number of samples. All experiments were run on CPU on
a MacBook Pro with an M1 chip.

8.1 Evaluation of the Transport Losses and Plans

8.1.1 Gradient Flows

We perform a gradient flow on the support of a discrete source distribution µ, aiming to minimise the
(Sliced) Wasserstein distance with respect to a discrete target distribution ν: minµ{Fν(µ)}, following
the setting of [CTV25]. This procedure yields a flow (µt)t that decreases the functional Fν(µ) over
time 0 ≤ t ≤ 1. We consider here several functionals: the Wasserstein distance W2

2, the Sliced
Wasserstein distance SW2

2, min PS2 and ES2. For min PS and ES, at each step we draw randomly
L directions θℓ ∈ Sd−1 and compute min PS2 ≈ minℓ PS2

θℓ
and ES ≈ 1

L

∑L
ℓ=1 LS2

θℓ
. Moreover, for

min PS, we use an optimisation scheme described in [CTV25] to obtain an approximation θ̂⋆ of an
optimal direction θ⋆ ∈ argminθ∈Sd−1 PS2

θ. In what follows, it is denoted PS2
θ̂⋆ .

We consider several target distributions of n = 50 samples, shown in the first and third columns of
Fig. 17: a Gaussian distribution (in 2 and 500 dimensions), a spiral, two moons, a circle and eight
Gaussians of different means. The source distribution is chosen to be a uniform distribution. We use
Adam as an optimisation scheme, with a learning rate of 0.02 for all methods, and consider L = 50
directions for the sliced approaches. We report the 2-Wasserstein distance between µt and ν at each
iteration of the optimisation procedure, and repeat each experiment 10 times.

One can observe that the Expected Sliced discrepancy does not converge in any setting. This finding
is consistent with the one of [Liu+24] (section 3.4). In contrast, all other methods enable convergence
to the target distribution, i.e. µt → ν as t → 1, when working in two dimensions. When considering
a 500-dimensional Gaussian distribution, only Wasserstein and PSθ̂⋆ achieve convergence: with a
fixed number of samples n, we suspect that the required number of directions to obtain a good
approximation must grow exponentially with the dimension, making min PS (with L = 50 directions),
ES and Sliced Wasserstein inadequate for this context. Using optimisation techniques in min PS
provides a single meaningful direction θ̂⋆, even when n is small compared to the dimension. One can
notice that Wasserstein and PSθ̂⋆ have very similar behaviours, which is backed by Proposition 11
which states that PSθ̂⋆ is equal to the 2-Wasserstein distance when θ̂⋆ is an optimal direction and
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when d ≥ 2n− 1. This encourages the use of the minimisation method proposed in [CTV25], which
outperforms the search over L random projections.
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Figure 17: Log 2-Wasserstein distance measured between a source and different target distributions
as a function of number of iterations. Plain lines represent the median over 10 iterations while shaded
regions indicate 0.25 and 0.75 quantiles.

8.1.2 Comparison of Transport Plans and Discrepancies

We now provide a quantitative assessment of the transport plans that can be estimated from sliced-
based methods.

Qualitative assessment of the transport plans. We illustrate some transport plans in several
two-dimensional settings. The first one corresponds to transporting samples of a source Gaussian
distribution to samples of a target Gaussian distribution with different parameters. The second one
considers two distributions sampled on circles of the same centre and different radii, with n = 24
samples. The last one considers a more challenging and non-linear setting, in which the source
distribution is composed of 8 Gaussians of several means and the target is composed of two moons.

Fig. 18 presents the plans obtained with 2-Wasserstein, Expected Sliced and min-Pivot Sliced, to-
gether with the associated discrepancy. We choose L = 50 directions, and fix n = 10 samples for
the first scenario and n = 24 otherwise. On can notice that, in the simple case of 2 Gaussians
as source and target distributions (first line), the transport cost is close to the 2-Wasserstein one.
Min-Pivot Sliced provides a plan that is close to the OT one; Expected Sliced provides a highly
non-deterministic coupling, associated each source point to numerous targets. When it comes to
non-linear settings (third and fifth lines), one can notice that the sliced estimated costs deviate from
their OT counterpart: as min PS and ES rely on plans obtained by projecting on a line then lifted to
the original space, and because none of these projections capture the true matching, the approxima-
tion is quite poor, with spurious matchings between the two parts of the moon. Dedicated variants of
Sliced Wasserstein have been proposed in this non-linear setting, for instance generalised versions in
which the data are projected onto a non linear surface, e.g. [Kol+19], and augmented ones [CYL20]
that first embeds the data into a higher dimensional space in which a linear surface better captures
the distances. These variants are out of the scope of this paper, but note that a non-linear variant
of min PS has been proposed in [CTV25].

Comparing plans obtained by flows. To avoid relying on one single direction and to better
take into account the non linearities on the distributions, we propose here to build on flows, for
which different directions can be chosen at each iteration. The second, fourth and sixth lines of
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Fig. 18 present trajectories obtained when considering such flows, with an SGD optimiser and a fixed
learning rate equal to 2 (as recommended by [Bon+15] under Equation 44, we take a learning rate
equal to the dimension). If the flow has converged after 200 steps (that is to say, when the Wasserstein
distance between two consecutive step is less than 10−6), we infer a transport plan as the map linking
the source and the target sample reached by the flow. This strategy also allows considering Sliced
Wasserstein to obtain a plan, as proposed in Section 3.3 of [Rab+12a]. One can notice that, as
expected, 2-Wasserstein flows plan recover the transport plan and that Sliced Wasserstein based
plan is close to the actual one. As observed in Section 8.1.1, even in the simple case of 2 Gaussians,
Expected Sliced does not converge. When considering min PS, flow-based transport allows enhancing
the approximation of the plan, avoiding spurious couplings between the two moons. One further
notices that this strategy comes with an extra computational cost as several iterations for computing
the flow are needed to obtain the approximation. We present this method to highlight the benefits
of stochastic algorithms when using sliced-based methods.
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Figure 18: Comparison of the plans obtained by sliced plans methods and 2-Wasserstein between
a source (blue samples) and a target (orange samples) distributions. First, third and fifth lines:
transport plans obtained by solving Wasserstein, min-Pivot Sliced and Expected Sliced. Second,
fourth and sixth lines: trajectories obtained by solving a gradient flow for Wasserstein, min-Pivot
Sliced, Expected Sliced and Sliced Wasserstein. In that case, the associated cost is computed by
mapping the source sample to the target sample that is reached by the flow.
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Timings We report some timings for the different methods, in order to assess their computational
efficiency. We consider the same settings as the first scenario of the previous section (two Gaussians
as a source and target distribution). For the Sliced Wasserstein flow, we perform 10 steps, with an
extra complexity linear with the number of steps. We vary the number of samples from n = 10 to
n = 107, and present the results in Fig. 19. One can notice that sliced-based method are significantly
faster to compute when n grows. Note that Wasserstein fails to be computed for n ≥ 105 due to
memory issues, as it requires to store the full cost matrix C ∈ Rn×n of size n2; there is no need to
store C for sliced-based methods, that require a memory of 2n for min PS and at most of 2Ln for ES.
The time complexities of all flow variants are proportional to the number of flow steps, and we notice
that all sliced methods have comparable complexities in O(Lnd+ Ln log(n)), which is substantially
advantageous compared to the O(n3 logn) complexity of standard OT.
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Figure 19: Running time comparisons of different methods for varying number of samples n.

8.2 Illustration on Colour Transfer

Colour transfer consists in transferring the colour distribution of a source image onto a target image,
while preserving the structure of the source. We see an RGB image I ∈ Rw×h×3 as the uniform
measure of its pixels in the RGB space µI := 1

wh

∑w
i=1

∑h
j=1 δIi,j,· ∈ P(R3). Given a source image I

and a target image J of same size, our objective is to match (in a certain sense) each pixel (i, j) of
I to a pixel (i′, j′) of J . We consider three different approaches: first, we compute a permutation
which is (approximately) optimal for the min PS discrepancy, approximated by searching over L = 50
directions. Using this permutation, we replace each pixel of I by its corresponding pixel in J . Second,
we approximate the Expected Sliced plan by averaging over L = 50 directions. Since this does not
yield a permutation but only a transport plan γ, we use the barycentric projection (i.e. conditional
expectation) of γ, which provides only an approximate matching to µJ . Finally, we compare these
methods with the Sliced Wasserstein (SW) flow proposed in [Rab+12a], which operates 10 steps of
Stochastic Gradient Descent with a learning rate of 1 on X 7−→ SW2

2(µX , µJ) initialised at X0 := I
and sampling a batch of 3 orthonormal directions at each step. Note that while the final iteration
is expected to verify µX ≈ µJ , it may not be the case in practice depending on the hyperparameter
choices. We report our results on three different image pairs in Figs. 20 to 22.

Figure 20: Colour transfer example on images of size 1000 × 669.
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Figure 21: Colour transfer example on images of size 1280 × 1024.

Figure 22: Colour transfer example on images of size 500 × 500.

In Fig. 20, the source and target images are relatively monochrome, which makes the colour transfer
task easier. We observe that the Pivot-Sliced and SW methods are comparable, while the Expected
Sliced results in duller colours. Contrastingly, in Fig. 21, the colour palettes are more diverse and
Pivot-Sliced yields a visually worse result than SW, while SW matches the colour distributions less
faithfully, with some artifacts in the sky. As for Expected Sliced, the results are again duller and
quite different to the target colour distribution. Finally, in Fig. 22, only the SW method produces
visually consistent results, the matching provided by min PS and ES fail to preserve sufficient spatial
structure, in particular in the green colours. Overall, while the plan associated to min PS can suffice
in practice, it appears that iterative methods such as the SW flow are better suited for this task. Our
experiments suggest that the barycentric projection of the Expected Sliced plan does not provide a
sound transportation.

8.3 Experiments on a Shape Registration Task

We now consider a shape registration task, with a rigid transformation that involves a translation and
a rotation. Most approaches to solve this problem are concerned with finding the right correspon-
dences between the points. For instance, the Iterative Closest Point (ICP) algorithm [BM92] relies
on nearest neighbour correspondences, considering the Euclidean distance between points. Optimal
transport is now a workhorse for this task, as it provides a principled way to find correspondences
between two point clouds; see [BD23] for a review of OT-based methods for point cloud registra-
tion. We here evaluate the performance of the sliced-based methods, namely min PS and ES, in this
context. We compare them to the 2-Wasserstein distance, which is a standard benchmark for point
cloud registration, and also to Sliced Wasserstein, using a gradient flow as described in Section 8.1.1
to get an approximated transport plan. Note that Expected Sliced does not provide a one-to-one
correspondence but they can be inferred from the blurred transport plan [Sol+15].

We consider two point clouds of 3D shapes, which are subsampled from the bunny and armadillo
shapes of the open3d library [ZPK18]. We first subsample both shapes with n = 500 points, and
then we apply 10 different rigid transformations to the source shape to get the target shape. We
then run the ICP algorithm, with several alignment methods: the nearest neighbour correspondence,
Wasserstein, Sliced Wasserstein, min-Pivot Sliced and Expected Sliced, to realign the two shapes.
Fig. 23 presents the two shapes, subsampled with n = 2000 points for visualization purposes. The
second line presents the Wasserstein distance between the (registered) source and target point clouds
along the iterations. One can notice that Min-Pivot Sliced yields the best registration among all
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methods: this conclusion was also reached by [Mah+23] who conjecture that it allows exiting local
minima of the ICP algorithm by finding an approximated matching.

We also consider the case where the shapes are not subsampled, which is a more computationally
challenging setup, especially for the armadillo shape. One can drawn similar conclusions, with min PS
yielding the best registration, with little variation around the different repetitions of the experiment.
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Figure 23: Evolution of the loss along the iterations of the ICP algorithm. The loss is computed as
the mean square distance between each target sample and the registered source. The first column
corresponds to the results for the armadillo shape, while the second column corresponds to the bunny
shape.
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A Appendix

A.1 Ambiguity in SWGG from [Mah+23]

Let µ1 = 1
n

∑
i δxi , µ2 = 1

n

∑
i δyi , and θ ∈ Sd−1. Consider σθ a permutation which sorts (θ⊤xi)ni=1

and τθ sorting (θ⊤yi)ni=1. The Sliced Wasserstein Generalised Geodesic distance ([Mah+23], Equation
8) is defined as

SWGG2
2(µ1, µ2, θ) :=

1
n

n∑
i=1

∥xσθ(i) − yτθ(i)∥2
2. (60)

We illustrate the coupling induced by SWGG2
2(µ1, µ2, θ) in Fig. 24:

Figure 24: Coupling γθ ∈ Π(µ1, µ2) induced by SWGG2
2(µ1, µ2, θ) for d = 2, n = 3, θ = (1, 0). The

support of the measure µ1 is represented by blue circles, and the support of µ2 with red squares.
The projected measures Pθ#µ1 and Pθ#µ2 are represented by the blue diamonds and triangles
respectively. The optimal coupling between Pθ#µ1 and Pθ#µ2 is drawn with purple curves, and
the associated coupling γθ between µ1 and µ2 is represented by the orange double lines. In this
example, the projections of the points of the support of µ1 are distinct (as for µ2), thus the coupling
πθ determines uniquely the coupling γθ, there is no ambiguity.

Unfortunately, the RHS quantity in Eq. (60) depends on the choice of the permutations, rendering
the quantity ill-defined, as showcased in Example 8.

Example 8 (Ambiguity in SWGG). Consider d = 2, n = 2, the points x1 = (0, 1), x2 =
(0, 0), y1 = (0, 0), y2 = (0, 1), the line θ = (1, 0) and the measures µ1 = 1

2(δx1 + δx2), µ2 =
1
2(δy1 +δy2). We have µ1 = µ2, and θ⊤u = 0 for all points u ∈ {x1, x2, y1, y2}, hence any choice of
permutations (σθ, τθ) sorts the respective points (θ⊤xi) and (θ⊤yi). Choosing (σθ, τθ) = (I, I),
we obtain

SWGG2
2(µ1, µ2, θ) = 1

2(∥x1 − y1∥2
2 + ∥x2 − y2∥2

2) = 1,

which in particular in non-zero, which shows that SWGG2(·, ·, θ) is not a distance. Another
possible choice (σθ, τθ) = ((2, 1), (2, 1)) yields a value of 0.

One could consider the following “fix” to the permutation choice issue:

S̃WGG
2
2(µ1, µ2, θ) := min

(σθ,τθ)∈Sθ(X,Y )

1
n

n∑
i=1

∥xσθ(i) − yτθ(i)∥2
2, (61)

where Sθ(X,Y ) is the set of pairs of permutations (σθ, τθ) that sort (θ⊤xi)ni=1 and (θ⊤yi)ni=1 respec-
tively. We illustrate this idea in Fig. 25.
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Figure 25: In this example, the projections sometimes coincide, and the optimal coupling πθ between
Pθ#µ1 and Pθ#µ2 does not determine the coupling between (x2, x3) and (y2, y3). In terms of per-
mutations, there are two possibilities: γθ := 1

3(δx1⊗y1 + δx2⊗y2 + δx3⊗y3) displayed with orange double
lines, and γ̃θ := 1

3(δx1⊗y1 + δx2⊗y3 + δx3⊗y2) represented by green squiggly lines. Here, the cost of γθ
is lower, so we would choose it.

A.2 Midpoints are Geodesic Middles

In the following, we remind a well-known simple result about geodesic spaces, which we apply to
show that Wasserstein means are middles of Wasserstein geodesics (see Proposition 3). We consider
a geodesic space (X , d), which is to say that d is a distance on X such that for any (x1, x2) ∈ X 2 there
exists a curve γ : [0, 1] −→ X with γ(0) = x1 and γ(1) = x2 such that d(γ(t), γ(s)) = |t− s|d(x1, d2).
Such a curve is called a geodesic between x1 and x2.

Lemma 12. Let (X , d) be a geodesic space, let x1, x2 ∈ X and consider the set M(x1, x2) of
Midpoints:

M(x1, x2) = argmin
y∈X

d(x1, y)2 + d(y, x2)2. (62)

This set is in fact exactly the set of middles of geodesics:

M(x1, x2) =
{
γ(1

2) | γ is a geodesic between x1 and x2
}
. (63)

Proof. Denote by M′(x1, x2) the RHS of Eq. (63), first we show M′(x1, x2) ⊂ M(x1, x2) and compute
the optimal value of Eq. (62). Let γ a constant-speed geodesic between x1 and x2, we have

d(x1, γ(1
2))2 + d(γ(1

2), x2)2 = d(γ(0), γ(1
2))2 + d(γ(1

2), γ(1))2 = d(x1, x2)2/2.

Now take any y ∈ X , we have (by convexity of t 7−→ t2, then by the triangle inequality for d)

d(x1, y)2 + d(y, x2)2 = 2(d(x1, y)2/2 + d(y, x2)2/2) (64)
≥ 2(d(x1, y)/2 + d(y, x2)/2)2 (65)
≥ d(x1, x2)2/2. (66)

This shows that any such γ(1
2) is solution of the optimisation problem which defines M(x1, x2), and

thus M′(x1, x2) ⊂ M(x1, x2). The value of the minimisation problem from Eq. (62) is d(x1, x2)2/2.

Let y∗ ∈ M(x1, x2), we now show that d(x1, y
∗) = d(y∗, x2) = d(x1, x2)/2. Since y∗ is optimal and

that the optimal value is d(x1, x2)2, the inequalities Eq. (65) and Eq. (66) are equalities for y := y∗.
First, Eq. (65) yields d(x1, y

∗) = d(y∗, x2), then Eq. (66) yields d(x1, y
∗) = d(x1, x2)/2.
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We now show that M(x1, x2) ⊂ M′(x1, x2): let y∗ ∈ M(x1, x2), consider γ1 a geodesic from x1 to y∗,
and γ2 a geodesic from y∗ to x2. We introduce the curve

γ :


[0, 1] −→ X

t 7−→
{

γ1(2t) if t ∈ [0, 1
2 ];

γ2(2t− 1) if t ∈ [1
2 , 1].

Our objective is to show that γ is a geodesic from x1 to x2 (since γ(1
2) = y∗, this will show that

y∗ ∈ M′(x1, x2)). By construction γ(0) = x1, γ(1) = x2. Let (t, s) ∈ [0, 1]2 with t ≤ s, we want to
prove d(γ(t), γ(s)) = |s− t|d(x1, x2).

Firstly, we consider the case (t, s) ∈ [0, 1
2 ]2. In this case,

d(γ(t), γ(s)) = d(γ1(2t), γ1(2s)) = (2s− 2t)d(x1, y
∗) = (s− t)d(x1, x2),

where we used d(x1, y
∗) = d(x1, x2)/2, which we proved earlier for any optimal y∗. The case (t, s) ∈

[1
2 , 1]2 can be treated similarly.

Secondly, we assume t ∈ [0, 1
2 ] and s ∈ [1

2 , 1]. We first prove d(γ(t), γ(s)) ≤ (s− t)d(x1, x2) using the
triangle inequality and d(xi, y∗) = d(x1, x2)/2 for i ∈ {1, 2}:

d(γ(t), γ(s)) ≤ d(γ(t), y∗) + d(y∗, γ(s))
= d(γ1(2t), γ1(1)) + d(γ2(0), γ2(2s− 1))
= (1 − 2t)d(x1, y

∗) + (2s− 1)d(y∗, x2)
= (s− t)d(x1, x2).

For the converse inequality d(γ(t), γ(s)) ≥ (s− t)d(x1, x2), we apply the triangle inequality:

d(x1, x2) ≤ d(x1, γ(t)) + d(γ(t), γ(s)) + d(γ(s), x2),

which yields:

d(γ(t), γ(s)) ≥ d(x1, x2) − d(γ1(0), γ1(2t)) − d(γ2(2s− 1), x2)
= (1 − t− (1 − s))d(x1, x2) = (s− t)d(x1, x2).

The case s ∈ [0, 1
2 ] and t ∈ [1

2 , 1] is done symmetrically and thus d(γ(t), γ(s)) = |s− t|d(x1, x2), which
shows that y∗ ∈ M′(x1, x2). We conclude that M′(x1, x2) = M(x1, x2).

A.3 Reminders on Disintegration of Measures

In Definition 10, we recall the definition of disintegration of measures with respect to a map (taken
from [AGS05], Theorem 5.3.1). By slight abuse of notation, we will write P−1(y) := P−1({y}) for a
map P : X −→ Y that need not be injective and y ∈ Y.

Definition 10. Consider a Borel map P : X −→ Y between Polish spaces X ,Y and µ ∈
P(X ). There exists a P#µ-almost-everywhere unique Borel family (µy)y∈Y ⊂ P(X ) of measures
verifying µy(X \ P−1(y)) = 0, and verifying the following identity against test functions ϕ ∈
C0
b (X ): ˆ

X
ϕ(x)dµ(x) =

ˆ
Y

(ˆ
P−1(y)

ϕ(x)dµy(x)
)

d(P#µ)(y). (67)

We will write Eq. (67) symbolically as:

µ(dx) = (P#µ) (P (dx)) µP (x)(dx). (68)

For example, in the case X = Rd × Rd and P (y, x) = y, the disintegration corresponds to the
disintegration with respect to the first marginal ν of a coupling γ ∈ Π(ν, µ). In this case, each
measure γy is a measure of P(R2d) concentrated on the slice {y}×Rd, which is routinely identified as
a measure on Rd in literature. This disintegration is written symbolically as γ(dy,dx) = ν(dy)γy(dx).
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A.4 Proof of the Disintegration Formula for ν-based Wasserstein

In this section, we provide a proof to Theorem 1, and use the notation from the statement. Let
ρ ∈ Γ(ν, µ1, µ2) (see Eq. (7)), we have

ˆ
R3d

∥x1 − x2∥2
2dρ(y, x1, x2) =

ˆ
Rd

(ˆ
R2d

∥x1 − x2∥2
2dρy(x1, x2)

)
dν(y)

≥
ˆ
Rd

W2
2(P1#ρy, P2#ρy)dν(y), (69)

where we wrote the disintegration ρ(dy,dx1,dx2) = ν(dy)ρy(dx1,dx2). Note that by [AGS05] Lemma
12.4.7, the map y 7−→ W2

2(P1#ρy, P2#ρy) is Borel.

Now since ρ ∈ Γ(ν, µ1, µ2), we can write P1,2#ρ =: γ1 ∈ Π∗(ν, µ1) and P1,3#ρ =: γ2 ∈ Π∗(ν, µ2). It
follows that for ν-almost every y ∈ Rd, we have for i ∈ {1, 2} that Pi#ρy = γyi , where we disintegrated
γi(dy,dx) = ν(dy)γyi (dx) (for example by [AGS05] Lemma 5.3.2). Taking the infimum on ρ on both
sides yields

W2
ν(µ1, µ2) ≥ inf

γi∈Π∗(ν,µi), i∈{1,2}

ˆ
Rd

W2
2(γy1 , γ

y
2 )dν(y). (70)

Fixing γi ∈ Π∗(ν, µi) for i ∈ {1, 2}, we now construct a 3-plan ρ ∈ Γ(ν, µ1, µ2) which attains the
lower bound in Eq. (69). Consider the disintegrations γi(dy,dx) = ν(dy)γyi (dx) for i ∈ {1, 2}.
The two families (γyi )y∈Rd are Borel in P2(Rd), hence by [AGS05] Lemma 12.4.7, there exists a
Borel family (ρy)y∈Rd in P2(R2d) such that for all y ∈ Rd, ρy ∈ Π∗(γy1 , γ

y
2 ). Setting ρ(dy,dx1, dx2) :=

ν(dy)ρy(dx1, dx2) yields the desired 3-plan, since for ν-almost every y ∈ Rd, ρy is an optimal transport
plan between γy1 and γy2 . We have shown that

∀γi ∈ Π∗(ν, µi), i ∈ {1, 2}, W2
ν(µ1, µ2) ≤

ˆ
Rd

W2
2(γy1 , γ

y
2 )dν(y), (71)

which shows the equality in Eq. (19).

We finish by showing that the infimum in Eq. (19) is indeed attained. Note that having the weak
convergence of plans (γn) ∈ Π(ν, µ1) does not yield the ν-almost-everywhere convergence of the
disintegrations γyn in general. Thankfully, we can leverage the existence of a solution of the original
formulation from Eq. (12) by Proposition 1. Using the fact that the two problems have the same
value, we can take a solution ρ of Eq. (12) and construct a solution of Eq. (19) by disintegration.
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