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Robust Barycenters of Persistence Diagrams
Keanu Sisouk, Eloi Tanguy, Julie Delon and Julien Tierny

Abstract—This short paper presents a general approach for
computing robust Wasserstein barycenters [2], [78], [79] of
persistence diagrams. The classical method consists in computing
assignment arithmetic means after finding the optimal transport
plans between the barycenter and the persistence diagrams.
However, this procedure only works for the transportation cost
related to the q-Wasserstein distance Wq when q = 2. We adapt
an alternative fixed-point method [74] to compute a barycenter
diagram for generic transportation costs (q > 1), in particular
those robust to outliers, q ∈ (1,2). We show the utility of
our work in two applications: (i) the clustering of persistence
diagrams on their metric space and (ii) the dictionary encoding
of persistence diagrams [71]. In both scenarios, we demonstrate
the added robustness to outliers provided by our generalized
framework. Our Python implementation is available at this
address: https://github.com/Keanu-Sisouk/RobustBarycenter.

Index Terms—Topological data analysis, ensemble data, persis-
tence diagrams, Wasserstein barycenter.

I. INTRODUCTION

W ITH measurement devices and numerical techniques
being more and more precise, the resulting datasets have

become more and more complex geometrically. This complexity
hinders the users during any exploration and analysis to
interpret them. Those challenges motivate the conception of
expressive, informative, concise and simple data abstractions,
encoding the main features and patterns of interest of the data.

Topological Data Analysis (TDA) [25] is a family of tools
developed to address this challenge. It aims to provide simple
objects, called topological representations, describing the main
topological structures in a dataset. TDA has become a staple
for analyzing scalar data, its efficiency and robustness being
shown in numerous visualization tasks [41]. It has proven to
be successful in many applications, several examples include
turbulent combustion [11], [37], [49], material sciences [29],
[39], [40], [72], nuclear energy [52], fluid dynamics [44], [56],
bioimaging [3], [9], [16], chemistry [6], [34], [57], [58] or
astrophysics [70], [73] to name a few.

Among the different topological representations, such as
the merge and contour trees [1], [14], [15], [35], [51], [75],
the Reeb graph [7], [24], [36], [60], [61], [76], or the Morse-
Smale complex [10], [22], [26], [27], [33], [38], [66], [69], the
Persistence Diagram (Fig. 1) as been prominently used and
studied. It is a simple and concise topological representation,
which encodes the main topological features of data.

With the increase of geometrical complexity discussed above,
a new challenge has come forth as users are confronted to the
emergence of ensemble datasets. With these representations, a
given phenomenon is not only described by a single dataset,
but by a collection of datasets, called ensemble members. This
results in the analysis of an ensemble where each element is a
topological representation, such as a persistence diagram.

However, this process moves the problem of analyzing
an ensemble of scalar fields to analyzing an ensemble of
persistence diagrams. To address this challenge, the question
of finding a good representative of such an ensemble has
emerged. An established answer to that question is the notion
of Wasserstein barycenter [2], [78] of persistence diagrams,
based on the so called q-Wasserstein distance [81]. To compute
such barycenters, several algorithms have been proposed for
q = 2 [48], [78], [80]. This barycenter emulates the behavior
of an average, and as such, it is also sensitive to outliers.

Works on Wasserstein medians counter this issue [13], [77],
showing their stability properties. In the context of probability
measures, extensions to generic transportation costs have been
introduced recently [12], [74].

This short paper proposes to leverage generic transporta-
tion costs for computing robust q-Wasserstein barycenters
of ensembles of persistence diagrams, with q > 1. For this,
we adapted a recent fixed-point method [74] from generic
probability measures to persistence diagrams. As discussed
above, the resulting barycenters have the advantage of being
more robust to the presence of outlier diagrams in the ensemble.
Experiments on synthetic and real-life data showcase this
property for typical ensembles of persistence diagrams used
previously in the literature. We show the utility of our
barycenters by using them in a clustering problem on the
Wasserstein metric space and by using them for a Wasserstein
dictionary encoding problem [71]. We give details on this
robust barycentric framework in Sec. III, then we show the
utility of these robust barycenters with experiments in Sec. IV
with two applications in Sec. IV-A and Sec. IV-B.

A. Related work

The literature related to our work can be classified into
two main categories, reviewed in the following: (i) ensemble
visualization, and (ii) topological methods for ensemble of
persistence diagrams.
(i) Ensemble visualization: A common approach to model
data variability is using ensemble datasets. In this setting,
the variability is modeled by a succession of empirical
observations (i.e., the members of the ensemble). Existing
approaches compute geometrical objects encoding the features
of interest (such as level sets and streamlines for example)
for each member of the ensemble. Then, a representative of
this ensemble of geometrical objects can be estimated. In
light of this, several techniques has been established. For
example, spaghetti plots [23] are used to study level-set
variability, especially for weather data [65], [68]. Box-plots
[53], [82] are used to analyze the variability of contours and
curves. In the case of flow ensemble, Hummel et al. [42] has
proposed a Lagrangian framework for classification purposes.
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More precisely, clustering techniques have been studied to
highlight the main trends in ensemble of streamlines [30]
and isocontours [31]. However, only few approaches applied
those strategies to topological representations. Favelier et
al. [28] and Athawale et al. [4] introduced techniques for
analyzing the geometrical variability of critical points and
gradient separatrices respectively. Ensemble layouts have been
proposed for contour trees [47], [84]. However, the above
techniques do not focus on the computation of a representative
of an ensemble of topological objects.
(ii) Topological methods: To find a representative of an ensem-
ble of persistence diagrams, notions from optimal transport [43],
[54] were adapted to persistence diagrams. A central notion
is the so-called Wasserstein distance [67]. The Wasserstein
distance between persistence diagrams [25] (Sec. II-B) has
been studied by the TDA community [18], [19]. This distance
is computed by solving an assignment problem, for which exact
[55] and approximate [5], [45] implementation can be found in
open-source [8], [32]. Using this distance, the Wasserstein
barycenter is used to find a representative diagram of an
ensemble, [2]. Turner et al. [78] first introduced an algorithm for
the computation of such a barycenter for persistence diagrams,
along with convergence results and theoretical properties of
the persistence diagram space. Lacombe et al. [48] proposed
a method to compute a barycenter based on the entropic
formulation of optimal transport [20], [21]. However, this
method requires a vectorization of persistence diagrams, which
is not only subject to parameters, but which also challenges
visual analysis and inspection. Indeed, in this case the features
of interest cannot be tracked by the users during the analysis.
Vidal et al. [80] proposed an approach allowing the tracking of
the features. This method is based on a progressive framework,
which accelerates the computation time compared to Turner
et al.’s method [78]. To take it further, several authors have
proposed methods to find a representation of ensembles of
topological descriptors by a basis of representative descriptors.
Li et al. [50] leveraged sketching methods [83] for vectorized
merge trees. Pont et al. [64] introduced a principal geodesic
analysis method for merge trees, and Sisouk et al. [71]
brought forth a Wasserstein dictionary encoding method for an
ensemble of persistence diagrams. Both latter methods avoid the
difficulties associated with vectorizations (e.g. quantization and
linearization artifacts, inaccuracies in vectorization reversal).
However, all of the above literature propose representatives that
can be sensible to the presence of outliers. Turner et al. [77]
studied the notion of median of a population of persistence
diagrams, but no exact algorithm nor computation was proposed.
In this work, we describe a general framework for computing
a robust barycenter, by adapting a recent fixed point method
[74] from generic probability measures to persistence diagrams.
This robust barycenter is more stable to the presence of outliers,
thereby enhancing other analysis frameworks such as clustering
algorithms or dictionary-based encodings.

B. Contributions
This paper makes the following contributions:

1) A general framework for robust barycenters of persistence
diagrams: By adapting a recent approach [74] from

Fig. 1. Example of persistence diagrams of a smooth (left) and noisy scalar
field (right). The four main features are represented with long bars in the
persistence diagrams. In the noisy diagram, the noise in the scalar field is
encoded by small bars near the diagonal.

probability measures to persistence diagrams, we show
how barycenter diagrams can be reliably estimated, for
generic Wq distances (Sec. III), despite outliers (Sec. IV).

2) An application to clustering: We present an application to
clustering (Sec. IV-A), where our work yields an improved
robustness to the outlier diagrams that are naturally present
in ensembles used previously in the literature.

3) An application to Wasserstein dictionary encoding: We
present an application to dictionary encoding (Sec. IV-B),
where the added robustness of our generalized barycenters
is demonstrated over standard barycenters.

4) Implementation: We provide a Python implementation of
our work that can be used for reproducibility purposes.

II. PRELIMINARIES

This section presents the required theoretical foundations to
our work. We introduce persistence diagrams (Sec. II-A) and
the usual metric used in topological data analysis (Sec. II-B).

A. Persistence diagrams

Given a scalar field f on a (dM )-manifold M , with dM ≤ 3
in our applications, we denote f−1

∞
(w) = f−1(]−∞,w]) the sub-

level set of f at value w ∈ R. While sweeping w from −∞ to
+∞, the topology of the set f−1

−∞(w) changes at specific values
w= f (c), associated to the critical points of f . These points are
classified by their index I : 0 for minimal, 1 for 1-saddles, . . .,
dM −1 for (dM −1)-saddles, and dM for maxima. The Elder
rule [25] states that each topological feature is associated to a
pair of critical points (b,d) =

(
f (c), f (c′)

)
, with f (c)< f (c′),

representing its birth b and death d in the sweep. These
pairs can be visually represented as vertical bars in R2, with
horizontal coordinate b and vertical coordinates b and d, where
b−d encodes the lifespan of the associated topological feature.
This representation is the so-called Persistence Diagram.
Formally, a persistence diagram is the union of a finite set of 2D
points X = {x = (b,d) ∈ R2 | b < d}, along with the diagonal
∆ = {(b,b) | b ∈ R} of R2 (the diagonal is not stored in any
way in practice). In most cases, important topological features
stand out from the diagonal while noise can be typically found
near the diagonal (Fig. 1). In the following, we will simply
denote a persistence diagram by X = {x1, . . . ,xK} with K ∈N∗.

B. Wasserstein distance and barycenter

The Wasserstein distance is widely used to compare persistence
diagrams. In topological data analysis, in order to use this
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Fig. 2. Comparison of barycenters computed with different values of q. On the
left we have terrain views of four scalar fields colored in blue, gray, yellow and
green, the latter being an outlier (featuring more peaks). The corresponding
persistence diagrams are represented with matching colors and the barycenters
are represented in cyan. The barycenter with q = 2 (center) is more sensitive
to the presence of the green outlier, with two cyan bars of medium persistence,
due to the outlier peaks in the green dataset. For q = 1.5 (right), the persistence
of these two bars is significantly reduced, and so will be their importance in
distance computations.

distance, a typical pre-processing involves augmenting the per-
sistence diagrams. Formally, let us consider X = {x1, . . . ,xK1}
and Y = {y1, . . . ,yK2}, two persistence diagrams. Taking a point
x=(b,d)∈R2, we denote by π∆(x)=

( b+d
2 , b+d

2

)
its projection

on ∆. We consider ∆X and ∆Y the diagonal projections of the
points of X and Y respectively. We finish by taking X ′ =X ∪∆Y
and Y ′ = Y ∪ ∆X . This results in |X ′| = |Y ′| = K. For the
remainder of this paper, we consider that persistence diagrams
are always augmented this way.

Then, for two persistence diagrams X and Y , the q-
Wasserstein distance Wp is defined as:

Wq(X ,Y ) = min
φ :X→Y

(
K

∑
ℓ=1

cq
(
xℓ,φ(xℓ)

))1/q

, (1)

where φ : X → Y is a bijection between X and Y . The
transportation cost cq, based on powered distances, is such
that cq(x,y) = ∥x− y∥q

2 if x /∈ ∆ or y /∈ ∆, and 0 otherwise. An
optimal bijection φ ∗ minimizing Eq. 1 is called an optimal
transport plan. In practice, q is often set to 2, yielding the
Wasserstein distance, noted W2. A Wasserstein Wq barycenter of
persistence diagrams X1, . . . ,Xm [78], is defined by minimizing
the Fréchet energy:

argmin
B

m

∑
i=1

λiW q
q (B,Xi), (2)

where λi ≥ 0 and ∑i λi = 1. Practical algorithms have been
proposed for the computation of Wasserstein barycenters [78],
[80], but only for the specific case where q = 2. When q = 2, a
solution B∗ of Eq. 2 has the following property: a point x ∈ B∗

is an arithmetic mean of m points each in X1, . . . ,Xm, which
considerably eases the optimization of Eq. 2. Fig. 2 (center)
presents an example of a W2 barycenter. A barycenter computed
using the W2 distance emulates the behavior of a mean of an
ensemble of scalars. As such, it is prone to the influence of
outliers. This motivates the use of a more general framework
for computing robust barycenters (detailed in Sec. III).

Algorithm 1: Barycenter computation algorithm.
Input: Set of persistence diagrams {X1, . . . ,Xm},

barycentric weights λ1, . . . ,λm, and iteration
number T .

Output : Wasserstein barycenter B(T ) = {x(T )1 , . . . ,x(T )K }.
Initialization: B(0) = X1.
for 0 ≤ t ≤ T −1 do

// 1. Assignment step
for i ∈ {1, . . . ,m} do

Compute φi ∈ argmin
φ :B(t)→Xi

K

∑
ℓ=1

cq
(
x(t)ℓ ,φ(x(t)ℓ )

)
.

end

// 2. Update step
for ℓ ∈ {1, . . . ,K} do

// Ground barycenter computation
Find x(t+1)

ℓ = bq
(
φ1(x

(t)
ℓ ), . . . ,φm(x

(t)
ℓ )
)
.

end
end

III. ROBUST BARYCENTER

This section presents a general framework for computing
barycenters of persistence diagrams using Wq distances, for
arbitrary q values such that q > 1.

A. Optimization

The optimization of Eq. 2 can be addressed by an iterative
algorithm Alg. 1, where each iteration involves two steps. First,
an assignment step computes the optimal assignment given
the Wq metric between each input diagram and the current
barycenter estimation. Second, in the update step, the Fréchet
energy is minimized by computing, for each barycenter point,
its ground barycenter in the birth/death plane. This is achieved
by updating each barycenter point to its optimal location, given
the assignments computed in the previous step.

For q = 2, the ground barycenter can be simply obtained by
computing, for each barycenter point, the arithmetic means of
its assigned points in the input diagrams [78], [80]. However,
for q ̸= 2, such a simple update procedure cannot be considered.
As illustrated in Fig. 3, an update based on the arithmetic mean
may increase the Fréchet energy for q ̸= 2, hence potentially
preventing Alg. 1 from converging toward a satisfying result.

Instead, to generalize the computation of ground barycenters
for q ̸= 2, we consider the following function, representing the
ground barycenter in the birth/death plane:

bq :


R2 × . . .×R2 → R2

(y1, . . . ,ym) 7→ argmin
x

m

∑
i=1

λicq(x,yi)
. (3)

To optimize Eq. 3, we use gradient descent, by leveraging
the automatic differentiation capabilities of PyTorch. This
optimization procedure is plugged into Alg. 1 in the update
step (ground barycenter computation line). In practice we give
a maximum number T of overall iterations. We noticed that
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Fig. 3. Simple example where computing the arithmetic mean instead of
optimizing bq increases the Fréchet energy (noted EF ) for q = 1. We have
three simple persistence diagrams, in dark blue, gray and yellow, each having a
single point. For this problem, the transport plans are fixed and the barycenter
has only one point. On the left we initialized the barycenter as the diagram
encoded in green. In the middle, we have the candidate of the barycenter
encoded in cyan when computing an arithmetic mean after one iteration. We
can see that the Fréchet energy (for q = 1) increased. On the right, we have a
candidate for the barycenter encoded in purple when optimizing bq instead,
this time displaying a decrease of the Fréchet energy at one iteration.

taking T < 10 is sufficient for convergence. Assumptions for
achieving convergence are discussed in the next section.

B. Convergence

Tanguy et al. prove, in the setup of probability measures,
that a fixed-point method for minimizing Eq. 3 converged
under certain assumptions [74]. In this section, we review
these assumptions in the setup of persistence diagrams to argue
the convergence of our overall approach.

Assumption 1 : For all (y1, . . . ,ym) ∈ R2 × . . .× R2, for

all λ1, . . . ,λm barycentric coefficients, argmin
x

m

∑
i=1

λicq(x,yi) is

reduced to a single element.

We prove that this assumption is satisfied in our case in
Appendix A, when q > 1. When q = 1, this assumption does
not hold in general (due to the presence of collinear points,
in particular on the diagonal). In practice, this may lead to
numerical instabilities when considering q= 1, especially when
ground barycenters are not unique.

Under those assumptions, and denoting the Fréchet energy

EF(B) =
m
∑

i=1
λiW

q
q (B,Xi), Tanguy et al. [74] show that for

two consecutive iterates B(t) and B(t+1), we have EF(B(t))≥
EF(B(t+1)). This means that fixed-point iterations (B(t)) de-
crease the energy optimized in Eq. 2.

For q ∈ (1,2), a resulting fixed point is a barycenter that
is more robust to the presence of an outlier, in the initial set
X1, . . . ,Xm, compared to a W2 barycenter. Fig. 2 illustrates this
difference when computing a barycenter with an outlier.

IV. RESULTS

This section presents two applications of our robust barycen-
ters (Sec. III) along with detailed experiments. The experi-
mental results are obtained on a computer with an NVIDIA
Geforce RTX 2060 (Mobile Q) with 6 GB of dedicated VRAM.
Our methods were implemented on Python, using Pytorch for
computations on the GPU. We ran some experiments on two
public ensembles [62] described in [63]. One is an acquired

2D ensemble and the other is a simulated 3D ensemble, both
selected from past SciVis contests [59]. For the experiments,
only the persistence pairs containing maxima were considered.

A. Clustering on the persistence diagram metric space

The first natural application of our robust barycenters consists
in using them for the problem of clustering an ensemble
of persistence diagrams X1, . . . ,XN . In particular, clustering
methods on ensembles of persistence diagrams group together
subset of members that have similar topological structures,
highlighting trends of topological features in the ensemble.

For this, we consider the classic clustering method, the k-
means algorithm. This is an iterative algorithm alternating
between two phases: computing k barycenters and labeling
the elements into k clusters. At first, k cluster barycenters
B j with j ∈ {1, . . . ,k} are initialized as k diagrams in the
initial input set X1, . . . ,XN , typically using the k-means++
method [17]. Then, the labeling phase consists in assigning
each diagrams Xn to the closest barycenter B j by using the
Wq distance. After the labeling phase, the barycenters are
updated by computing new barycenters based on the new k
clusters using Alg. 1. The algorithm stops when reaching a
maximum number of iterations or when converging (i.e., when
the labels do not change anymore). However, when using W2
as a distance, the presence of an outlier in an ensemble of
persistence diagrams can incorrectly influence the barycenters
in the k-means algorithm, and as a consequence the output
labels of the clustering.

We leverage the robustness of the Wq barycenters for
clustering problems when there are outliers in the ensemble to
be clustered. We show a case in Fig. 4 where we artificially
injected outlier pixels in an ensemble of synthetic scalar
fields (a common degradation in real-life noisy data). This
results in outlier diagrams in the input ensemble. We illustrate
the clustering results with different q ∈ {2,1.8,1.6,1.4,1.2,1}.
This experiment shows that for q lower than 1.6, the resulting
clustering put together the outliers into the correct groups,
while for q = 2 the outliers are incorrectly clustered. This can
also be seen in Fig. 5 where an outlier is naturally present
in the ensemble of scalar fields. In this example, our generic
barycenters enable the computation of the correct clustering, as
off q = 1.6. Moreover, as illustrated on the right of Fig. 5 for
the last cluster, our generic barycenters are more representative,
visually, of the input diagrams as the importance of outlier
persistence pairs is decreased in our framework.

B. Wasserstein dictionary encoding of persistence diagrams

Another application consists in using our robust barycenters
as a core procedure for dictionary based encodings of ensembles
of persistence diagrams [71]. Let X1, . . . ,XN be an ensemble of
persistence diagrams. A Wasserstein dictionary encoding aims
at optimizing a set of persistence diagrams D∗ = {a∗1, . . . ,a

∗
m}

(called dictionary) and N vectors of barycentric coefficients
Λ∗ = {λλλ

∗
1, . . . ,λλλ

∗
N} (i.e., N vectors of size m, with positive

elements summing to 1) by solving:

argmin
D ,Λ

N

∑
ℓ=1

W 2
2
(
B2(D ,λλλ ℓ),Xℓ

)
, (4)
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Fig. 4. Comparison of clustering results on an ensemble of diagrams of Gaussian mixtures. On the left we have the 3 clusters: one cluster of 2 Gaussians
(top), one cluster of 3 Gaussians (middle) and one cluster of 4 Gaussians (bottom). In the first and second clusters, we inserted an outlier (highlighted in green
and cyan respectively) by setting one isolated pixel to an arbitrarily high value. Those pixels result in persistent pairs in the corresponding diagrams. On top
we have the distance matrices of Wq for q ∈ {2,1.8,1.6,1.4,1.2,1}. In the distance matrices, the clustering results are shown with dashed squares (clusters are
colored in dark purple, purple and pale purple) while the outlier diagrams are indicated with a plain square (green and cyan). In the three frames; we visualize
the evolution of each cluster and their barycenters for each q. Each frame corresponds to a cluster (top: cluster 1, middle: cluster 2, bottom: cluster 3). The
outlier diagrams are colored in green and cyan. The barycenters are shown in opaque while the diagrams of each cluster are shown in transparent. We observe
that for q ∈ {2,1.8} the green outlier is incorrectly assigned to the second cluster (as it exhibits the same number of persistence pairs, 3, as the entries of
cluster 2). Similarly, given its number of persistence pairs, the cyan outlier is incorrectly assigned to the third cluster until q = 1.6. Beyond this value, the
effect of the extra feature in these outlier diagrams is decreased, enabling their correct clustering.

where B2(D ,λλλ ℓ) denotes a W2 barycenter of D under barycen-
tric coefficients λλλ l . Informally, this framework works as a lossy
compression for persistence diagrams. The goal is to optimize
a smaller set of persistence diagrams (m ≪ N) and N vectors
of barycentric weights such that the N Wasserstein barycenters
defined by the barycentric weights are good approximations
of the N input diagrams. This results in an encoding of much
smaller size as only the dictionary and the N barycentric
weights need to be stored to disk. This framework has two
main applications: data reduction and dimensionality reduction.
Naturally this framework can be extended to other Wasserstein
distances. Then, Eq. 4 becomes:

argmin
D ,Λ

N

∑
l=1

W q
q
(
Bq(D ,λλλ l),Xl

)
, (5)

where Bq(D ,λλλ l) denotes a Wq barycenter returned by Alg. 1.
For q = 2, Sisouk et al. [71] introduced the analytic expression
of the gradient ∇B2(D ,λλλ l) with respect to a1, . . . ,am and λλλ l ,
enabling a simple gradient descent scheme for the optimization
of Eq. 5. However, for q ̸= 2, since ground barycenters are no
longer obtained as arithmetic means, but by an interative, fixed-
point method (Sec. III-B), the gradient of the energy associated

with Eq. 5 cannot be derived analytically. Instead, we rely on
automatic differentiation (implemented in PyTorch) and use
Adam [46] to optimize both the dictionary D = {a1, . . . ,am}
and the vectors of barycentric coefficients Λ = {λλλ 1, . . . ,λλλ N}.

This extension results in a Wasserstein dictionary method
that is more stable to the presence of outliers in the original
input ensemble. Moreover, this extension lets us improve the
initialization method for the dictionary. At first, the dictionary
was chosen as the m elements that are the farthest to each other
in the initial set [71]. But extending Eq. 4 to Eq. 5 allowed the
dictionary to be initialized as barycenters issued from a k-means
algorithm with k = m. From our experience, this initialization
results in a better optimized energy (Eq. 5) and stability to
the presence of outliers compared to the initial one [71]. We
showcase this extension by applying a Wasserstein dictionary
method using Wq. Fig. 6 shows a comparison of 2D planar
layout of the barycenters, generated by the dictionaries and
vectors optimized with Eq. 4 and Eq. 5, on the Isabel ensemble
where we removed some entries to artificially inject an outlier
(see the caption of Fig. 6 for more details). Specifically, this 2D
planar layout is a direct application of the dictionary encoding
when the dictionary has three atoms in it. After optimizing
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Fig. 5. Visual comparison of distance matrices using Wq for q ∈ {2,1.8,1.6,1.4,1.2,1} on the Volcanic Eruption ensemble and the clustering results. Distance
matrices are represented similarly to Fig. 4. This ensemble of 12 persistence diagrams has a natural outlier highlighted in cyan on the distance matrices. On the
top, we can see that for q ∈ {2,1.8}, the clustering algorithm keeps the outlier alone, groups the 8 first diagrams together and groups the last three together.
Then starting from 1.6 to 1.2, the correct clusters are returned. But for q = 1, we can see that the clusters are not discriminated enough. On the bottom we
have one representative scalar field for each cluster, and on the bottom left the corresponding diagrams, the cyan scalar field and diagram being the outlier. On
the right, we have a visual comparison of two barycenters of the last cluster of four diagrams (represented on the bottom right of the square). The pink one
encodes a W2 barycenter, while the green one encodes a W1.2 barycenter. We can see the influence of the outlier in the pink barycenter, as the two global pairs
are higher than the green ones testifying the difference of scaling between the outlier (cyan) and the three other diagrams in the cluster. Also, we notice the
presence of an isolated pair above the diagonal (pink diagram, rightmost pair) that is generated by the isolated persistent pair in the outlier diagram (cyan
diagram, rightmost pair). This outlier pair is not present in the W1.2 barycenter (green diagram), hence making it more visually representative of the ensemble
than the W2 barycenter (pink).

Fig. 6. Visual comparison of 2D planar layouts (on the right) of Wasserstein barycenters after solving Eq. 4 and Eq. 5 when taking a dictionary with 3
diagrams. The initial ensemble Isabel is composed of 12 diagrams divided in 3 classes of 4 diagrams each. We removed 2 diagrams from the first and second
classes, yielding an imbalanced ensemble (in terms of class size) of 8 diagrams. We show representative scalar field for each cluster, along with their diagram.
The clusters are colored in dark purple, purple and cyan respectively. In the planar layouts, the points, representing the barycenters, are colored by their ground
truth classification. For q = 2, the barycenter approximating an element of the first cluster (dark purple) is misplaced (i.e., located near the second cluster,
purple). For q = 1.5, this same barycenter is correctly placed, thus yielding a planar projection that is more faithful to the ground-truth classification.

the dictionary, with the three Wasserstein distances between
them, the cosine law can be used to form a triangle in R2 and
then use the vectors as barycentric coefficients in R2. This
experiments shows that this extension is more stable to the
presence of outliers, resulting in planar projections that are
more faithful to the ground truth classification.

C. Computation time comparison
In this section, we compare the time needed to compute a

barycenter, with regard to the W2 metric, using the arithmetic
mean between points of R2, and the time when computing
b2. Our experiment consists in computing a barycenter of
persistence diagrams for the Isabel ensemble (Sec. II-B), where

TABLE I
RUNNING TIMES (IN SECONDS) FOR COMPUTING A W2 BARYCENTER.

Method m = 4 m = 6
Arithmetic Mean 1.9 24.9
b2 (Pytorch) 6.3 29.0

each diagram is threshold by persistence to feature only ∼ 100
pairs and where T is set to 5. We report the resulting running
times in Tab. I. When considering m = 4 input diagrams, the
computation based on the arithmetic mean is 3 times faster than
the one based on b2. However, for a larger ensemble (m = 6),
the difference is reduced to 4 seconds, yielding compatible run
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times between the two approaches.

V. CONCLUSION

In this paper, we showcased the utility of a method for
computing a robust Wasserstein barycenters of persistence
diagrams. Specifically, we adapted a recent fixed-point method
algorithm [74] to the case of persistence diagrams. We first gave
a reminder on this fixed point method framework to compute
this robust barycenter. We also gave a formal proof of the
necessary hypothesis for the convergence of this method in the
Appendix. Then we presented two applications of this robust
barycenter to clustering and dictionary encoding of persistence
diagrams in the presence of outliers. We believe that our work
on the robustness of Wasserstein barycenters is a useful step
toward improving their applicability in the analysis of real-life
ensembles of persistence diagrams.

A legitimate direction for future work is the generalization
of such robust barycenters to other topological descriptors such
as merge trees, for which barycentric frameworks derived from
the Wasserstein distance have been proposed [63]. Also, we
will continue our investigation of the adaption of methods from
Optimal Transport to ensembles of topological representations,
as we believe it can become a key solution in the long term
for the advanced analysis of large-scale ensemble datasets.
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APPENDIX A
SUFFICIENT CONDITIONS FOR ASSUMPTION 1

Conditions 1 : Let y1, . . . ,ym ∈ Rd and (λ1, . . . ,λm) ∈ (0,1)m

such that ∑i λi = 1. Then for q ∈ (1,+∞), the function defined
as:

Vq := x 7−→
m

∑
i=1

λi∥x− yi∥q
2,

has a unique minimiser in Rd . If m ≥ 3 and there exists i1 <
i2 < i3 ∈ {1, . . . ,m} such that the points yi1 ,yi2 and yi3 are not
on a common affine line, then V1 also has a unique minimiser.

Proof. — Step 1: Case q > 1.
For q > 1 and a fixed y ∈ Rd , introduce the function hq :=

x 7−→ ∥x−y∥q
2. We begin by showing that hq is strictly convex.

Take x1,x2 ∈ Rd and t ∈ (0,1). We re-write:

hq(tx1 +(1− t)x2) = ∥t(x1 − y)+(1− t)(x2 − y)∥q
2.

Introduce u := x1 − y and v := x2 − y. By convexity of ∥ · ∥2,
we have ∥tu+(1− t)v∥2 ≤ t∥u∥2 +(1− t)∥v∥2. We consider
the equality and strict inequality cases separately.

1) If ∥tu+(1− t)v∥2 < t∥u∥2 +(1− t)∥v∥2, we use consec-
utively the fact that a 7−→ aq is increasing and convex on
R+:

∥tu+(1− t)v∥q
2 < (t∥u∥2 +(1− t)∥v∥2)

q

≤ t∥u∥q
2 +(1− t)∥v∥q

2.

2) If ∥tu + (1 − t)v∥2 = t∥u∥2 + (1 − t)∥v∥2, equality in
the triangle inequality for ∥ · ∥2 yields that u and v
are positively co-linear, leading to the two following
alternatives:

a) If v = 0 then we show the strict inequality as follows:

∥tu∥q
2 = tq∥u∥q

2 < t∥u∥q
2,

where the inequality comes from the fact that q > 1 and
t ∈ (0,1), with u ̸= 0 (indeed, if u = 0 then we have
u = v = 0 yielding x1 = x2 which is a contradiction).

b) If v ̸= 0 then there exists α ≥ 0 such that u = αv. This
implies that ∥u∥2 ̸= ∥v∥2: if equality held, then since
α ≥ 0 we obtain α = 1, then u = v yields x1 = x2 which
is a contradiction. Since ∥u∥2 ̸= ∥v∥2, we can apply the
strict convexity of a 7−→ aq on R+, which shows:

∥tu+(1− t)v∥q
2 = (t∥u∥2 +(1− t)∥v∥2)

q

< t∥u∥q
2 +(1− t)∥v∥q

2.

In all cases, we obtain the inequality:

hq(tx1 +(1− t)x2)< thq(x1)+(1− t)hq(x2),

showing strict convexity of hq. As a convex combination of
strictly convex functions, Vq is strictly convex. Since Vq is
coercive, we conclude that it admits a unique minimiser.

— Step 2: Case q = 1.
We now assume that m ≥ 3 and that there exists i1 < i2 <

i3 ∈ {1, . . . ,m} such that y j1 ,y j2 and yi3 are not on a common
affine line. We prove that V1 is strictly convex: let x1 ̸= x2 ∈Rd

and t ∈ (0,1), by the triangle inequality (similarly to the case
q > 1):

V1
(
tx1 +(1− t)x2

)
≤

m

∑
i=1

λi
(
∥t(x1 − yi)∥2 +∥(1− t)(x2 − yi)∥2

)
,

using the triangle inequality. Our objective is to show that in
this case, the inequality is strict. There is equality if and only
if for each i ∈ {1, . . . ,m}, x2 − yi = 0 or there exists αi ∈ R+

such that x1−yi = αi(x2−yi). We now reason by contradiction
and assume that equality holds. We distinguish two cases
concerning the points (yik)

3
k=1 from the assumption.

1) If there exists k ∈ {1,2,3} such that x2 −yik = 0, without
any loss of generality we take yi1 = x2, then yi1 = x2,
furthermore the assumption on (yik)

3
k=1 implies that:

∀i ∈ {i2, i3}, x2 − yi ̸= 0.

Using these properties, we deduce from the equality in
the triangle inequality that there exists αik ≥ 0 such that
x1−yik =αik(x2−yik) for k ∈ {2,3}. Note that the αik ̸= 1,
otherwise x1 − yik = x2 − yik which is impossible since
x1 ̸= x2. We can now re-rewrite the equality as

yik = x1 +
αik

1−αik
(x1 − x2),

concluding that yi2 , yi3 and x2 are on the common affine
line x1 +R(x1 − x2), which is a contradiction as x2 = yi1 .
We conclude that the equality cannot hold in the triangle
inequality in this case.

2) If ∀k ∈ {1,2,3}, x2 − yik ̸= 0, then the triangle equality
condition provides the existence of αik ≥ 0 such that
x1−yik =α jk(x2−yik). Again αik ̸= 1 for the same reasons
discussed above. Similarly we re-write the equality as:

yik = x1 +
αik

1−αik
(x1 − x2),

concluding that the three points (yik)
3
k=1 are on the com-

mon affine line x1 +R(x1 − x2) which is a contradiction,
hence equality cannot hold in the triangle inequality.

In both cases, we have proven that equality in the triangle
inequality cannot happen, yielding:

V1
(
tx+(1− t)x2

)
< tV1(x)+(1− t)V1(x2),

which shows the strict convexity of V1. Since V1 is coercive,
we can conclude that it admits a unique minimiser.

Remark 1 : When q = 1 it is crucial that at least three points
are not on a common affine line. For instance if we have only
two points, and take λ1 = λ2 = 1/2, then argminx ∥x− y1∥2 +
∥x− y2∥2 = {ty1 +(1− t)y2 | t ∈ [0,1]}.
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