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PART 1

Maths

IMR  Logical Propositions

=

A logical proposition p is a mathematical phrase that is either true or false.

The negation of a proposition is written — : —p reads "not p"
A logical operator can be defined by its truth table :
p = ¢ is defined by —p or ¢, or by the following table (T is short for True and F is short for False) :

b|lgqg|p|porg
T|T| F T
T|F | F F
F|T| T T
F|F| T T

p = q reads "if p then ¢" or "p implies ¢". Notice that is it always true if p is wrong!

Quantifiers

V reads "for all" or "for each" or "for every".
J reads "exists".

' n : : n n : n
3! reads "exists a unique" or "exists an only

Negating a quantified proposition

A quantified proposition will always look like this "Quantifier, Quantifier, ... , Quantifier, p"
where p is a proposition with no quantifiers.

In order to negate that proposition, you negate every quantifier and p.

The opposite of V is 3 (and conversely).

il Let A, BCC.
M) Negatep="Va€ A, F€B,a+b=0".

Reasoning techniques

1.3.1 Equivalence

p < q reads "p if and only if ¢" or "p is equivalent to ¢". The equivalence method (or reasoning "by
equivalence") is when you prove something via a chain of equivalences. This is the shortest and most
difficult way to prove a proposition of the form "p < ¢". Another way of proving p < ¢ is to separate
the proofs of p = g and ¢ = p.
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3  For n € N, we define z, := (14 14v/3)™.
|L< Find all the n € N that satisfy z, € Ry

1.3.2 Analysis-Synthesis

The Analysis-Synthesis method

A/S is used to answer questions like "find all the x that satisfy ..." or "prove that there exists a
unique x that satisfies ...".

1) Analysis : you analyse a solution and discover its properties : "Let = be a solution, then x
satisfies ... so ... so ...". At the end you want z € S’ where S’ is a small set you hope is the
solution set. In the analysis you draw necessary conditions.

2) Synthesis : you check that S’ is indeed the solution set, or you find conditions on its elements
to be solutions : you end up with a subset of S’ that is the solution set. In the synthesis you
highlight sufficient conditions.

Find all the functions f : R — R that are differentiable and that satisfy the equation :
V(z,y) €R?  flz+y) = flz)+ f(y)

Let f: R — R a function.
Show that 3!(a,b) € F(R,R)? so that f = a+ b and a is even and b is odd.

1.3.3 Contraposition

The Contraposition method

p = q has the same value as ~q = —p. r

Let n € N.
Prove that "n? is odd" = "n is odd".

E Let a € R. Show by contraposition that :

Ve >0, laj]<e "= a=0.

1.3.4 Proof by contradiction/ "by the absurd"

The contradiction method

In order to show that a proposition p is true, you can prove that —p implies something contra-
dictory. If —p is absurd, then p is true.

Prove the unicity of the limit of a convergent sequence by supposing it has two different

Ml limits.
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1 8  For next time

Prove the contraposition method by proving that p = ¢ and —-¢ = —p have the same
values.

To do that you can either draw both truth tables for p = ¢ and —q = —p, or write their
definitions.

Find the functions f : R — R that satisfy :

V(,y) ER?, f(2) x fy) - flaxy)=z+y
Hint : find f(0).

Show that /2 is irrational.

(And irrational number is a number x that cannot be written in the form z = P where
q
p € Z and q € N¥).

Learn the following content :

g _Dcivition

For all n € N, we define n! (pronounce "factorial n") by n! =1 x 2 x ... x n and 0! = 1.

n!

For all (k,n) € N2, we define (Z) (read "n choose k") by ICEATS

Remark : (Z) is the number of possibilities of choosing k objects within n objects.

Binomial properties

Let (a,b) € N2. We have :
b b b b b
PascAL’s formula : if a,b > 1, (b B 1) + (b B 1) — <b>
a—1 a a

Binomial theorem : V(z,y) € C%, VneN, (z+y)"=> (n) akynk

Let n € N. Compute the following quantity :

Ex 11

Homework Correction

1.5.1 Correction of Ex 8

We shall write the symbol = to express that two propositions have the same value.

(=g = —p) = (=(=g) or =p) = (g or =p) = (p=q)
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1.5.2 Correction of Ex 9
Analysis
Let f be a solution to the equation.

In particular, by applying the equation at (x,y) = (0, 0), we have f(0)2 — f(0) = 0, and thus f(0) =0
or f(0)=1.

Let 2 € R. By applying the equation at (x,0) we have :

f(x) x f(0) = £(0) = .

We deduce that f(0) # 0 otherwise at x = 1 we would have 0 = 1. Therefore f(0) = 1.
Conclusion of the Analysis : Vo € R, f(z) =z + 1.

Synthesis
Let f: R — R be defined by Vx € R, f(x) =2+ 1.
Let (z,y) € R f(2)f(y) — flay) = (@ + D)y +1) —ay — L =2 +y.

Therefore f is a solution of the equation.

Finally, the only solution of the equation is .

1.5.3 Correction of Ex 10

Let us reason by contradiction : we suppose that there exists (p,q) € N x N* so that /2 = 2
q

2
We thus have 2 = p—z, therefore p? = 2¢2.
q

Let us write the decomposition into prime factors of a number a € N : a = pi* x p5? X ... X p&", where
P1, ..., pp are distinet prime numbers, a1, ..., o, € N* and n € N. (for instance 24 = 23 x 3.)

Notice that a? = pfo‘l X ... X p2@nhence for each prime number P, the maximum amount of times
you can divide a® by P is even : either P is one of the p; thus that amount is 2c; which is even, or P
is different to every p; and that amount is 0, which is also even.

Let us define m; the maximum amount of times you can divise p by 2 and mo the same for ¢q. The
maximum amount of times you can divide p? by 2 is 2m1 (respectively 2ms for ¢?).

Since p? = 2¢%, we have 2m; = 1 + 2my (you can divide 2¢> 1+ 2ms times by 2).

That equation is absurd because on the left side you have an even number and on the left you have
an odd one.

Conclusion : the supposition "3(p,q) € N x N*, /2 = Py is absurd and so | /2 is irrational.
q

Correction of Ex 11

We use the Binomial theorem with (z,y) = (1,1) : Z <Z> = Z (Z) Fx1m b=+ =
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Induction

Note : induction can also be called recursion.

Simple Induction

Induction is a way of proving a property P, that depends on a natural number n.

Proving by (simple) induction is saying that :

if the property is true at the rank n =0

and that for all n, if the property is true at n then it is true at the rank n + 1,
then it is true for all n.

Therefore, proof by induction is always done in two steps :

1) Initialisation Prove for n =0

2) Induction Let n € N. Suppose the property true at rank n (suppose P, true). Using that,
prove Pp1.

\. y

Remarks :

e For the induction phase, you can also go from n — 1 to n, in that case you must suppose n > 1.

e Using the same principle, induction can also define objects ("by induction") For example, one
can define n! foralln e Nby 0!=1and Vn >1, nl=nx(n—-1)!
e You can do a "finite induction" by using an induction to prove a property for 0 < n < M instead

of for all n € N. The process is exactly the same, you just have to suppose n smaller than M —1
when you prove P,41 with P,.

Let g€ C\ {1} and n € N.

n 1_qn+1
Show that qu:—
1—g¢q
k=0
" +1)(2n+1
vmen, Y- nntbntl

k=0

Let (a,b) € C?> and n € N.
Prove the Binomial theorem : (a + b)" = Z (n) akprk

"6 1a L Ex i3] Exiz

Strong Induction

Strong induction is the same as simple induction, except that during the induction phase,
instead of supposing the previous step true, you suppose all previous steps true.

1) Initialisation Prove for n =0
2) Induction Let n € N, suppose that Vk € [0,n], Py is true, and prove P, ;.

\. J

You can also suppose P, ..., P,—1 to be true and prove P, if you give yourself n > 1.
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Let (uy) be defined by : up =1,Vn € N, wupi1 =ug+ ... +up
Prove that ¥n > 1, w, =2""!

Euclidian division.
Let (a,b) € N x N*. Prove that 3!(¢,7) € Nx [0,b— 1], a=bg+r.

Exi6fEx 15

o) Exercises

Let A be a subset of N* that satisfies the properties :
elcA
eVneA 2neA
e VneN' n+leA=necA

Prove that A = N*
Hint : try to prove n € A for small values of n.

Let a < b two real numbers. Let f : [a,b] — [a,b] be K-Lipschitz continuous function

with 0 < K < 1.
Reminder : f is K-Lipschitz continous means that V(z,y) € [a,b]%, |f(z) — f(y)| <
Kz —y|

Show that the sequence (u,) defined by ug € [a,b], Vn € N,  up41 = f(up) converges
towards a fixed point p of f (p exists thanks to the Intermediate Values Theorem).

—eas J B
e O O

P4 Sets and maps

Set operators

l

Let A and B be two sets.

The belonging of an element to a set is written €, (read "in") : @ € A means that the element
a belongs to the set A.

The inclusion A C B is a proposition that means Va € A, a € B.

The equality A = B means that A C B and B C A. Seperating the two C is a useful way to
prove that two sets are equal.

Sets can be defined by two methods : by "direct image" (for instance let F = {z? + 1|z € R) or
by "conditions" (for instance {z € R|x? 4+ x + 1 = 0}.)

The privation \ substracts a set from another : [0, 2]\]1, 2] = [0, 1].

The union A U B is the set of the elements that are in A or in B. The intersection A N B is the
set composed of elements that are in both A and B.

When defining several n objects in A, you must write "Let (aq,...,a,) € A™.

The cartesian product A x B is defined by A x B = {(a,b)|a € A,b € B}.
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| 4

Let A, B be two sets. A map from A to B is defined in the following manner :

A — B - .
f: { v — (@) Where f(z) has an explicit expression.
A is the map’s domain is B its target. f(A) is f’s image.
Let b€ B and a € A. If f(a) = b then a is called a fiber of b.

An injection is a map satisfying V(a1,a2) € 42,  f(a1) = f(a2) = a1 = az. An injection can
only have one or zero fibers per b € B

A surjection is a map satisfying Vb € B, da € A, f(a) = b. Every b € B has at least one
fiber by f.

A bijection or one-to-one map is a map that is both injective and surjective. It satisfies
Vbe B, 3Jlac A, f(a)="0.Eachbec B has one and only one fiber by a bijection.

EMN Definitions

Complex Numbers

The set of complex numbers C is the set {z + iy|(z,y) € R?}. "i" is a quantity that satisfies i = —1.
Warning, do not write v/—1 because that has no meaning! (—i)? = —1 too.

Complex exponential
4

Yo €R, €% = cos(ep) + isin(p)

Representations

Im

Algebric representation : A
VzeC, 3(z,y) € R? 2z =x+iy. We define Re(z) := =z yE-o-o-A-
(real part) and Im(z) := y (imaginary part). :

Polar representation :
VzeC, 3IN(r,p) €Ry x[0,27], z=re"?. We define |z| ;=7
(modulus) and Arg(z) := ¢ (its primary argument). 4
0 x » Re

If z =a+1ib € C, we have |z| = Va? + b?

The conjugate of z =a + b€ CisZ=a —ib.
We also have Vo € R, ei¥ = e~

Let z € C. Prove :

Re(z) = Fre and Im(z) = S

(=)}
L

bed
L
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| Corollary N

Let x € R. Applying the previous exercise to €™ gives the EULER formula :
eiz + —1ix i e—ix
cos(z) = —5 and sin(x) =
Using the Binomial Theorem (BT), we can linearise cos™(x) and sin™(z) (transform them into
sums of cos(kz) and sin(kz))

\.

|

Linearisation of cos® : Let x € R.
; i\ 3
er + 6—21’
cos®(x) = (T) (Euler)
=273 (63” +3e'" + 3¢ + 673”) (BT)
=272 (cos(3x) + 3cos(x)) (Euler)

1
=12 cos(3z) + %cos(w)

(=)

W Let z € R.

4 Linearise sin*(z).
L

Properties of the conjugate, the modulus and the argument

Let (2,2)) € C?. 2+ 2 =2+ 2 22/ =zZx72.

Triangular inequality : |z + 2/| < |z| + |#/|

Second triangular inequality : ||z| — |2/|| < |z — 2|

Suppose z and 2’ nonzero. |z + 2| = |z| +|2/| & INeERL, z=\
= el x |

|22/ = |z| X |z

Arg(z2') = Arg(z) + Arg(2')[27]

Complex exponential

exp can be continued to C with the formula : Vz =a +ib € C, e* :=e? x e

’ ’ - —
We have V(z,2') € C?, e*t% =¢e* x ¢ and €* = €?

VO € R, |e"| =1 And thus cos?d +sin?6 = 1

L

Q) Let z=a+ibeC.
4 Compute |€?|.

(A1

10
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Trigonometric formulas

Let (a,b) € R2.
cos(a + b) = cos(a) cos(b) — sin(a) sin(b), cos(a — b) = cos(a) cos(b) + sin(a) sin(b)
sin(a + b) = sin(a) cos(b) + sin(b) cos(a), sin(a — b) = sin(a) cos(b) — sin(b) cos(a)

cos(2a) = cos?(a) — sin?(a) = 2cos?(a) — 1 = 1 — 2sin?(a)
sin(2a) = 2 cos(a) sin(a)

1+ cos(2a
2 )

1 — cos(2a)

sin?(a) = 5

cos?(a) =

cos(a) cos(b) = 1 (cos(a + b) + cos(a — b))
sin(a) sin(b) = —1 (cos(a + b) — cos(a — b))
sin(a) cos(b) = 3 (sin(a + b) + sin(a — b))

cos(a) + cos(b) = 2 cos (a+b> cos (Tb) , cos(a) —cos(b) = —2sin (aTb sin %)
sin(a) + sin(b) = 2sin (%b) cos (Tb> , sm(a) —sin(b) = 2 cos (‘LTH’) sin (‘“b)

| 4

If you have any doubts, use the parity of cos and sin and their particular values to check you formulas.

| Expansion N

Let z € R and n € N. The MOIVRE formula | cos(nx) + isin(nz) = (cosx + isinx)" | allows to
express cos(nx) or sin(nz) as polynomials in cos(z) and sin(z) using the Binomial Theorem.

To do that you write cos(nz) = Re ((cos(z) + isin(x))™) or sin(nz) = Im (cos(x) + isin(z))"),
then you use the Binomial Theorem to expand the power.

g Let 6 € R.

L>LI< Expand cos(36) into a polynomial in cos(#) and sin(6)

m LetxeRandneN

¥4 Compute Si(x Z cos(kz) and So(x) = Z (Z) sin(kx)
L k=0

Formulas around =

Let a € R

cos(—a) = cos(a), sin(—a) = —sin(a)

cos(m —a) = —cos(a), sin(m —a) = sin(a)
cos(m + a) = —cos(a), sin(r + a) = —sin(a)
cos(§ —a) = sin(a), sin(§ —a) = cos(a)
cos(§ +a) = —sin(a), sin(§ + a) = cos(a)

To memorise this, use the trigonometric circle (cos is the projection on the horizontal x axis and sin
the projection on the vertical y axis). You also need to know some particular values (summarised in

this diagram) :

11
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sin

Half-arc formulas

Let (a,b) € R2.
€% 4+ 1 = 2¢'% cos 5 elo — 1 = 2e's sin §

. . - a+b _ - - . satb | _
e 4 e = 22 cos bT“, el — etb — 9j¢'"3 gin 2=b

Prove the previous equations.
Hint : use EULER’s formula).

g _D:inition

s
Let x € R that satisfies z # 5[77], we define its tangent tan(z) =

Ex 24

cos(x)

sinz
tan(a) + tan(b)

et @B €Y (G ). Wobee s imaloF0) = o one o)

Let a € R\ (5§ + 7Z).
Prove that tan(a)tan(§ —a) = 1.

12
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Half-tangent formulas

Let 0 # 7[27]. Let t := tan §. We have

il — 2t 2t
COSHZW, smﬁzm, tanf = g

To check, use that cos is even and that sin and tan are odd. You can also use that tan isn’t always
defined, but the others are.

N
1)c059:2c0s2§—1:1+t2—1(since@:1+tan2g.)
Finall 9—1_t2

inally | cos =1

2t
_ [ 0y _
2) tanf = tan(5 + 3) = T
. 2t 1l =42 2t
3) 51n9=tan90050:1_t2><1+t2= e
J

Square roots of unity

Let n € N*. The equation 2" = 1 has exactly n solutions which are the e™n" with k € [0,n—1]
. The are called the n-th roots of unity, we write their set U,.
~
Analysis
Let z € C be a n-th root of unity. Let us write z = e’ its polar expression.
We have, since z™ = 1, " = 1, therefore r = 1 and nf = 0[2x], hence 3k € Z, nf = 2kn
2km
thus dk € Z, 0= —
n
Yet 6 € [0, 27[ thus k € [0,n — 1].
Synthesis
Let k € [0,n — 1].
We have (egirlfﬂ)n = g2ihm — 1,
n solutions ?
We now have to prove that the e " are distinct two by two. Let (k, k') € [0,n — 1]
Suppose X0 = *% . Since 0 < k k' <n,0< %, % < 2.
By the unicity of the primary argument (both arguments are in [0, 27[), we conclude that
k=K.
We thus have n distinct solutions.
J

Remark : Let w = e n. We have U, = {WF|k € [0,n — 1]}

(=)
2 Let n € N*. Compute Z z.
ﬁ ZGUTL

13
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n-th root of any complex number

| 4

Let z € C* and n € N*.
2im . k
Let w := e » and s be a particular n-th root of z. The n-th roots of z are the for
k€ [0,n—1].
N
Let r € C.
ris a n — th root of z & r" = 2
<" =u" (uis a particular root)
r n
s(-) =1
u
r
& —e U,
s Ike[o,n—-1], r=uw”
J

How to find a particular n-th root

. .0
Let z =re? € C* . |u:= {/re'n |is a particular n-th root of z.

How to find a square root of z =a +ib

If you only have z € C in its algebric form z = a+1b, you can find its square roots by Analysis-Synthesis
following this method :
Analysis
Let r = x + 7y be a square root of z.
Necessarily, |r|? = |z| so if we have 2% + 32 = |2|.
Necessarily, (x + iy)? = a + ib thus by applying Re and Im we have the system (*) :

22—y = a

2cy = b

In particular with the previous equation we have :

2_ .2 2 2| +a
— = X =
Iz y2 ® " This solves in : 2
4yt = |z ), _ By
Y 2
: . ) ) ) |z +a
Notice that |z| > |a| thanks to the triangular inequality, so necessarily, x = + 5 and y =
2| —a
+
2

The second line of the system (*) read 2xy = b. Therefore, there are two possibilities for the pair
(x,y), that satisfy sign(zy) = sign(b).

Synthesis

By theorem there are exactly two solutions, and we have found 2. Therefore, the two aforementioned
solutions are the two only solutions.

14
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N~
(@l Let A =1+ 2i.
b

Find all the square roots of A using the previous method.

Finding the roots of a second-degree complex polynomial

Let P =aX?+bX + c with (a,b,c) € C* x C x C.
Let A := b? — 4ac, and § be a square root of A.
—b+94 —b—90

g and z9 = 5

1) If A # 0, then there are two solutions z; =

b
2) If A =0, then there is one solution zy = ~%a
a

0 A
3@ Provethat forall z€ C, P(2) =0& |2+ —| = —.
2a 4a?

X

= Using that equation, prove the previous theorem.

Homework Correction

3.2.1 Correction of Ex 8

z2+z a+ib+a—1b z2—%Z a+ib—a+ib
Let z = a +ib € C. We have 5 = =a, and = =

b
2 2 2

3.2.2 Correction of Ex 9

1 A A . . . 1 1 3
= (e® — 421 4 6107 — 4o 2T 4 o~ hiT) = gcos(él:c) — §cos(2x) +3

sint(z) = (2i) 74 (e — e7®)" = 16

3.2.3 Correction of Ex 10
€] = e+ = [e?] x |ef?] =

3.2.4 Correction of Ex 11

cos(30) = Re ((cos 0 + isin 0)®) = Re (cos® 0 + 3i cos? O sin 0 + 3i? cos 0 sin? f + i3 sin” §) = ‘ cos® f — 3 cos O sin? ‘

3.2.5 Correction of Ex 12
n ' 1— ei(n—i—l):c (1 _ ei(n+1)x)(1 _ e—ix)
. ix\k | __ _
Suppose x # 0[27]. We have S1(z) = Re <z%(e ) ) =Re (1_6195) =Re ( 0 —cosa)tsm’s )’
1— e~ — eilntle g eina\ 1 — cos(z) — cos((n + 1)z) + cos(nz)
N 2 — 2cos(x)

Theref =
erefore S1(z) = Re ( 2 _2cosx

1 — +1
Finally | S1(z) = 54— cos(na;)_ ;Z)Zigz) )2) . If £ = 0[27] then Sy (z) = n.

We have Sy(z) = Im (Z <Z> eikw> —TIm ((1 + ei:v)n) —Im ((26% COS(%))") —[on sin(%)cos”(%)

k=0

15
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3.2.6 Correction of Ex 13

a+b 71L+b
ath _ 21‘1**’6 2 e 2 — gia | b
5 .
This gives the first equation with b = 0. The last equat10n is proved in the same way, and it implies
the second too.

Let us prove the third equation first. We have 2¢ 4 cos @

3.2.7 Correction of Ex 14

tan(a) tan(f —a) = sin(a) Sin(g —a) _ sinacosa _
’ cos(a)cos(f —a) cosasina

3.2.8 Correction of Ex 15

n—1 n
i w
E z= E wF where w = %" (# 1). Therefore the sum equals to . =[0].
2€Un, k=0

3.2.9 Correction of Ex 16

Analysis. Let § = x + iy be a square root of A.
Necessarily, 62 = A and |6|? = |A| therefore :

?+y? = A
22—y = 1
2zy = 2

541 5—-1
\f and y =+ \f

Yet the third line glves 2ry =2 so x and y have the same sign.

cwa e (oA (50

Synthesis
We only have 2 possibilities, therefore since there are only two solutions these are the solutions :

VE+1  [V/B-1
52:&( 5 +1 5 )

3.2.10 Correction of Ex 17

Therefore x = +

et s b\ _ ¥ —dac , Vb P © o P() =0
et z € C. z—|—2a = Tad? Z+4a2+a 12 a z) =0.
b ) —b+4d
IfA#0then P(z) =024+ —=+—& 2=
2a 2a 2a

16
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Linear Algebra

BN General Algebra

]

A group (G, ) is a the pair of a set G on which is defined an operation * that verifies :
e associativity : V(a,b,c) € G3, ax (bxc) = (a*b)*c
e neutral element : de€ G, VYa € G, axe=exa=a

o inversibility : YVa € G, dbe G, axb=bxa=ce

You can write ab instead of a % b and talk about the group G instead of the group (G, %) when there

is no ambiguity.

Let (G, ) be a group, and (a,b) € G. What is (a *b)~1?

We now suppose that Va € G, a? = e. Prove that G is commutative.

Let (G,*) be a group, and H C G. (H, %) is said to ba a sub-group of G when :
e € H and ¥(a,b) € H?, ab~'e H

To prove that H is a sub-group of G' you can also prove H # @ and V(a,b) € H?, ab™! € H
and instead of the second proposition you can prove seperately that Ya € H, a~! € H and that

Y(a,b) € H?>, axbc H

Let (G,*¢) and (H,*p) be two groups. A map ¢ : G — H is said to be a group morphism
when :

V(a,b) € G2, ¢(ax*gb) = ¢(a) xg ©(b).

We define its Kernel Ker(p) = {a € G : p(a) = ey} = ¢ '({eny}) (where ey is the neutral
element of H).

A morphism ¢ : G — H is injective if and only if Kerp = {eg}. ‘

We also define its Image Im(y¢) = ¢(G).
A morphism from a group G to the same groupe G is said to be an endomorphism.
A bijective morphism is called an isomorphism.

A bijective endomorphism is called an automorphism.

| 4

Let (G, *g) and (H,*g) be two groups and ¢ : G — H be a group morphism. Let G’
be a subgroup of G and H’ a subgroup of H.

Ex 30

Prove that ¢(G’) is a sub-group of H and that ¢~*(H’) is a sub-group of G.

17
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| 4

A triplet (A, +, x) is said to be a ring when :
e (A, +) is a commutative group : V(a,b) € A2, a+b=b+a
e X is associative and has a neutral element written 14.
e x is distributive over + : Let (a,b,¢) € 4% : a x (b+c) = (a x b) + (a x ¢)
and (a+b) xc=(axc)+ (bxc)

Let (A,+4,%x4) and (B,+p, xp) be two rings. A map ¢ : A — B is said to be a ring
morphism when :

e ¢ is a group morphism from the group (A, +4) to the group (B, +5)

e o(ly)=1p

o V(z,y) € A%, p(zxay)=p(z) xB ¢(y)

. J

g _Dcivition

An integral domain is a ring (A, +, x) that verifies the properties :

o« A# {0}

e (A, x) is commutative

e Aisintegral : V(z,y) € A2, zy=0% (z=0o0ry=0).

.

By contraposition, the "integral" property can be re-written V(x,y) € A%, (z # 0 and y # 0) < 2y # 0.

| 4

Let (A, +, x) be a ring. B C A is said to be a sub-ring of A when :
e 14€B
e V(z,y)€B? xz-y€B
e V(z,y) € B, zy€eB

Therefore a sub-ring is a sub-group that is stable by multiplication (the second operation).

. J

Equivalence relations

A relation R on a set A is a map R : A — { True, False }. An equivalence relation verifies :
o reflexivity : Va € A, aRa
o symmetry : V(a,b) € A%, aRb = bRa
e transitivity : ¥(a,b,c) € A3, if aRb and bRc then aRe.

Let a € A. Its equivalency class @ is defined by @ = {b € A : aRb}.

Quotient Sets

Let R be an equivalence relation on a set X. We define the quotient set X/R as the set of
the equivalency classes.

For instance for n € N, Z/nZ is defined as the classes of congruence modulo n. It can be given
a group structure for + and even a ring structure with 4+ and x.

18
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A field (K, +, x) is ring that has the properties :
o K# {0}

o (K, x) is commutative

o Vx € K\ {0}, 3FJyekK, zy=I1k:every z € K\ {0} has an inverse for "x".

| 4

Vector Spaces : first definitions

Let K be field (in practice, K =R or C).

g _Dcivition

A vector space is a commutative group (FE,+) with an external scalar multiplication

{KXE s E

e — i that satisfies the following properties :

e Pseudo-associativity : V(\, u,r) € K2 x B, Auzx) = (Au)z

e Distributivities : V(\, u, v, y) € K2 x B2, Mz +y) = x+ Xy, and (A\+p)z = Az + uy
e Neutral operator : Vx € £, lgxx ==«

The elements of E are the vectors and the elements of K the scalars.

Sub-vector spaces

Let E be a K-vectorial space, and let F' C E. F is a sup-vector space (or "sub-space") of E
when F' is stable by addition and by scalar multiplication. This is summarised by :

Ope€F, and V(\uz,y)€K:2xF2 Xe+puycF

Since a sub-space is a vector space, to prove that a set is a vector space you can prove that it is a
sub-vector space of a larger vector space.

g _Dcivition

Let E be a K-vector space, let n € N and let (z, .
n

.,Tpn) € E™. A linear combination of the

vectors 1, ..., T, is a vector Z)\ixi with (Aq, ..., Ap) € K"
i=1

Let A C E. The span of A is the smallest sub-space of E that contains A. It is also the set of
all the linear combinations of elements of A. We note it Span(A).

19
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Linear maps

| 4

Let E, F be two K-vector spaces. A linear map f : E — F' is a map that is :
e compatible with "+" : V(x,y) € E?, f(z+1vy) = f(x) + f(y) (so f is a group morphism)
e compatible with "." : V(A\,z) e Kx E, f(Azx) = Af(z)

f is a linear map if and only if |V(\, u, 7, y) € K2 x B2, f(Ax + py) = Mf(x) + pf(y)

The image of any sub-vector space by a linear map and its kernel are sub-vector spaces.

A linear map f is a group morphism therefore is | injective if and only if Kerf = {0}

When a linear map f goes from F to FE it is called an endomorphism.
When it is bijective we call it an isomorphism.
When it is both bijective and an endomorphism we call it an automorphism.

g _D:vition

We note L(E) the set of all the endomorphisms of F (it’s a K-vector space).

We note L(E, F) the vector space of the linear maps from F to F.

We note GL(FE) the set of all the automorphisms of E' (it’s a group for the composition "o" but
not a vector space).

Exercises for next time : We note Or r the set of the odd functions from R to R.
e Prove that (OrR,+) is a sub-group of (F(R,R),+).
e Prove that (OrR,©) is a sub-group of (F(R,R), o).
e Is (OgrR, x) a sub-group of (F(R,R), x)?
e Prove that (OrR,+,0) is a sub-ring of (F(R,R), +,o0).
e Prove that (Orp,+,.) is a R-sub-vector space of F(R,R).
e Prove that Z/3Z is a field.
e Prove that z — Z is an automorphism of the R-vector space C and of the ring (C, +x).
e Prove that matrix transposition is an injective linear map.
=

Vector Spaces

N Vector Families

We consider a family (e;);eq1,,] of vectors of a K-vector space E.

g _Dcivition

We say that (e;) is a spanning family when Span((e;)) = E. This is the same as :

All vectors are linear combinations of the (e;) :|Vz € E, 3J(A1,...., ) € K" z = Z i€
i=1

We say that (e;) is spanning a sub-vector space F' when Span((e;)) = F.
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independent families
|

(e;) is said to be linearly independent when all vectors can have only one decomposition in

that family :
n n

Vee B, == Z)‘iei = Zuiei, = Vie[l,n], A=
i=1 i=1

Equivalently, [V(A1,...,An) €K"Y Xe;=0 = Vie[lLn], \=0
i=1
A family that isn’t independent is said to be dependent.

Two vectors are independent if and only if they are not colinear.

g _Dcinition

(e;) is a basis of E when it is both spanning F and independent.

This is summarised by : Vo € E, 3!(A1,...,\,) € K", z = Z)‘iei
i=1

\

This is generalised to infinite families by replacing each sum by one containing only a finite number
of (e;) : for example (e;);cp is a basis of E (not finite-dimensional here) when :

p
VeeE, JpeN, I, .mA,) EKP, 2= Ageq,.
=1

Characterisation of a linear map by the image of a basis

Let E, F' be two K-vector spaces and (e;) je[1,5] be a basis of £ and (y;);ec[1,p) @ family of vectors
of F.
Then |3Jf € L(E,F), Vje[l,pl, f(e;) =1y

.

Image of a basis by a linear map

Let E, F' be two K-vector spaces and (e;);c[1,n] @ basis of E. Let f € L(E, F'). We have :

f is injective < (f(e;)) is independent

f is surjective < (f(e;)) is spanning

f is an isomorphism < (f(e;)) is a basis of F'

Sums of Sub-spaces

Let F be a K-vector space and E1, Es be two sub-vector spaces of F.
E1 X E2 — E
(1‘1, 1'2) — X1+ T2

We define ¢ : { a linear map from E; x Es to E.
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The set By + Ey = {x1 + x2|(x1,22) € E1 X E3} is a sub-space of E (because E; + Ey = Imy)
Let F' = E} + Es. Because they both equate to "¢ is injective', we have 1) < 2) :

1)V eF, z=x1+zy=a)+zhb=z1=2a],20=ab (v1,2] € E1,x2,25 € E2)

2)Vx € F, Iz1,x2) € E1 X By, x=x1+ T2

In that case we say that E; and F» are in direct sum and we write Fy & Fy = F.

We have |"E; and Fj are in direct sum" < FE; N Ey = {0}

When F & Ey = E we say that they are supplementary.

| 4

Definition on a decomposition

P

Let Ey, ..., E, be subspaces of E so that E = @Ez and (f1,..., fp) € L(E1, F) x ... x L(Ep, F).
i=1

Then 3!f € L(E, F), Yie[Lpl, flg =F;

projectors

|

projector on F' parallelly to G :
J F — E
"l z — zF
p is an endomorphism and we have Ker(p) = G, Im(p) = F and p*> = p. (p?> =pop)

Suppose E = F @ G. Since Vo € E, (zp,zg) € F x G, x =xzp+ fg, we can define the

g _Dcinition

A linear form is a linear map £ — K.

Hyperplanes

A subspace H of F is said to be a hyperplane of E when one of the following equivalent
properties is met :

1)AN € E\{0}, E=H®KN (KN = {AN|) € K})
2)Jp € L(E,K)\ {0}, H =Kerp

Adapted basis theorem

P
Suppose E = @ Ej and that it has a basis. Then there exists an adapted basis (b;);e; :
k=1

p
I = | J I with the I, disjoint,
k=1
and Vk € [1,p], (bi)ier, is a basis of E.
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Finite Dimensional Vector Spaces

A vector space F is said to be finite-dimensional when it has a finite spanning family.

Let E be a finite-dimensional K-vector space.

Completion theorems

|

e Any independent family of vectors of F can be completed into a basis of E. That com-
pletion can be made with vectors of any spanning family.

e Any family spanning F contains a basis of E.

e I has a basis.

The oversize lemma

|

Suppose that E is spanned by a family of n vectors. Then all families of n + 1 vectors are
dependent.

1

All bases of E have the same size n, we call it the dimension of F (dim £ = n).
All independent families of size p satisfy p < n with equality if and only if it is a basis

All spanning families of size p satisfy p > n with equality if and only if it is a basis

Dimension of sub-spaces

Let F' be a sub-space of E. Then F' is finite-dimensional. Let p = dim F', we have p < n with
equality if and only if £ = F.

v

Let F, G be two subspaces of E. We have :
o dim(F+G)=dimF +dimG —dim(FNG) (GRASSMANN’s formula)

e if F' and G form a direct sum then dim(F & G) = dim F + dim G

o dim(F'+G) =dim F +dimG < F and G are in direct sum.

We define the rank of a family (x;) by rank(z;) = dim(Span(z;)).
We define the rank of a linear map f by rank(f) = dim(Imjf)

Let f € L(E, F) where E is of finite dimension n and F' is any vector space.
We have the rank theorem : |rank(f) + dim(Ker(f)) = dim E

Let f € L(E). f is injective < f is surjective < f is an isomorphism < rank(f) = n.
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W4 Exercises

Let E and F' be two vector spaces.

Find all the linear maps u : E — F so that Vo € E, (u(z),z) is dependent.

Let F and F be two finite-dimensional vector spaces.

Let w € L(E, F) and A C E. Prove that Span(u(A4)) = u(SpanA).

Let E be a finite-dimension vector space of dimension n.

Let (f,g) € L(E)? so that f + g = Idg and rank(f) + rank(g) < n (Idg is the identity
map x — )

1) Let F =Im(f) and G = Im(g). Prove that F & G = E.
2) Using the rank theorem prove that Ker(f) + Ker(g) = E.
3) Prove that f and g are projectors.

Let E be a vector space and f € L(E). Let (a, 8) € K2 so that a # 3.
1) Prove that E = Im(f — oldg) + Im(f — SldE).

2) We now suppose that (f —aldg) o (f — fldg) = 0. Prove that f is an automorphism
and give f~L.

3) Prove that E = Ker(f — aldg) & Ker(f — pldg).

T S s

Matrices

GWR® Matrix - Linear map correspondance

M, ,(K) is the set of all the matrices with n lines and p columns with coefficients in K. It is a
K-vector space with two multiplications :

My, (K) x My o(K) — M, 4(K) q M, ,(K) xKP — K"
(A, B) — AXB an (A, X) — Ax X

Let £ and F' be two finite-dimensional vector spaces of dimensions p and n respectively. Let (e;) c[1p]
be a basis of £ and (f;);e[1,,) a basis of F.

24



6. MATRICES - 4H eloi.tanguy@polytechnique.edu

|

Let x = Z:I:zfz € F. We define | mat,)(z) = : It is an element of K™ or of M, ; (K)
i=1 .
Let (y1,-.-,Yp) € FP. We define |mat f,)(y1,.-,4p) = | Y1 | | ¥p

Where each Yj is the column matrix of y; in the basis (f;). maty,(y;) is an element of M, ,(K).

Let u € L(E, F'). We define | mat () (s,)(u) = | uler) | ... | u(ep) | € Mpp(K)

We have mat(ej)’(fi)(u) = (ai,j)ie[[l,n]},je{l,p} with Vj € {1, p}, u(ej) = Zai,jfi
=1

Letu € L(E, F). Let A = mat ) (f,)(u). Let z € Eand y € F. Let X = mat . )(z) and Y = maty,(y).

We have‘AX:Y@)u(x):y‘

Canonical association

Consider (e;) the canonical basis of K? and (f;) the canonical basis of K.

KP — K©

Let A € M, ,(K). Its canonically associated endomorphism is u : { X . AX

We therefore define Im(A) = Im(u) and Ker(A) = Ker(u).

Composition and matrix products

Let E, F,G be finite-dimensional spaces of bases B,C,D. Let uw € L(E,F) and v € L(F,QG).
We have : |matp p(v o u) = matc p(v) X matp c(u)

Block matrices and stability

Let F be a subset of E and u € L(E). We say that F is stable by v when u(F) C F.
Suppose E = Ey @ Es. Let (b;) be an adapted basis : (b1, ..., b) is a basis of Eq and (bgy1, ..., bp)
of EQ.

mat ) (u) can be written in block form : mat, ) (u) = ( é g )

Then‘El isstablebyu@CzO‘and‘Eg isstablebyu(z)B:O‘

Specific Matrices

M, ,(K) has a canonical basis : (Ej j)ic[1,n],je1,p]) 0 that (Ei )k = 0ixdji-
Therefore dim (M, ,(K)) = np
We now consider n = p : the square matrices.
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g _Dcinition

1 0

We define I,, = .
0 1
We define GL,,(K) the group of the inversible matrices :
VA e GL,(K), 3B e GL,(K), AB=BA=1I,
M,(K) — K

n
We define the trace Tr : A N Z aig
i=1

We also define the matrix transposition
{ A = AT = (a0 e

Properties

Tr is a linear form and A +— A7 is an automorphism. Let (A, B) € M,,(K)2. We have :
e Tr(AB) = Tr(BA)
e (AB)T = BT AT
o Tr(AT) = Tr(A)

A matrix (a; ;) is said to be diagonal when V(i,j) € [1,n]? i # j = a;; = 0. We note the
vector space of the diagonal matrices of size n D, (K).

A matrix (a; ;) is said to be upper-triangular when V(i, j) € [1,n]?, i>j = a;; =0. It is
said to be strictly upper-triangular when is it both upper-triangular and when its diagonal
is 0.

The vector space of the upper-triangular matrices is written 7,7 (K) and the strictly upper-
triangular ones T, (K).

Similarly we define the lower-triangular matrices 7, (K) and their strict versions 7}, ~ (K).

A matrix A is said to be symmetrical when AT = A : their vector space is written S, (K).
A matrix A is said to be antisymmetrical when AT = —A : their vector space is written
A (K).

Remark : Let (4, B) € T,/ (K)2. AB € T,7 (K) with Vi € [1,n], (AB)i; = aiibi;

Endomorphism-matrix relation

Let E be finite-dimensional of dimension n and of basis (€;)ic[1,n)- Let (z;) € E™ and let
A= mat(ei) (a;z)

(x;) is a basis of £ < A is inversible

Then let E, F' two finite-dimensional spaces of bases (e;) and (f;), let u € L(E, F).

mat e, ( #,(u) is inversible < u is an isomorphism

Therefore for square matrices if AB = I,, then A is inversible of inverse B.
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Inversibility of a triangular matrix

|

Let T € T.}(K). ‘T is inversible < its diagonal has no zero

In that case, T-! € T,/ (K).

|

Nilpotence of a strictly triangular matrix

|

We say that a matrix A is nilpotent when 3k € N, A* = 0. (Same for an endomorphism).
Let T € T,; " (K). Then T" = 0.

Y Rank, equivalence, similarity

Changing bases

j

Let E be finite-dimensional with bases (e;) and (e}). The base-change matrix from (e;) to (e})

i5 | Plepy—(e;) = makie;)(€5)

Let z € E, let X = mat,,)(z) and X' = mat (. (z). We have | X = P, ()X’

Let u € L(E, F') with (e;) and (e}) two bases of E, (f;) and (f]) two bases of F'.
Let A= mat(ej),(fi)(u) and A’ = mat(eg),(fi/)(u)

=1
Then |4’ = (Pye(ry) X AX Pyetey)

g _D:vition

Two matrices A and B in M, ,(K) are said to be equivalent when :
(P, Q) € GL,(K) x GL,(K), B = PAQ | This means that they represent the same linear
map in the right pair of bases.

Two square matrices A and B are said to be similar when |3P € GL,(K), A= P 'BP|
This means that they represent the same endomorphism in the right basis.

They are both equivalence relations.

\

Example : two similar matrices have the same trace.

Rank of a matrix

Let A € M, ,(K). We define rank(A) = rank(u) (with v € L(K?,K") its canonically associated
linear map)

Let » < min(n,p). We define by blocks J, = ( 1;; 8 )

Let A € M, ,(K). ‘rankA =r & A is equivalent to J,

.

Example : rank(A) = rank(A7).
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Rank and subs-matrices

Let A € Mn, p(K).

Sub-matrix theorem

| 4

e Suppose rank(A) > r. Then A has an inversible sub-matrix of size r x 7.

e Suppose that A has an inversible sub-matrix of size r x r. Then rank(A) > r.

rank(A) = r < "A has an inversible sub-matrix of size (r,7) and all strictly bigger square
sub-matrices are not inversible."

Ex 35

3) Let f € L(R3) canonically associated to M. Give N = maty (f).

1 1 0
Lete M=| 0 2 0 |,B=(e1,e2 e3)and the canonical basis of R3
0 -1 3
uy = €1
Let ¢ ug = ex+ea+es ,and U= (uj,ug,us).
uz = es3
1) Show that U is a basis of R3.
2) Give P = Py, p the change of basis matrix from B to U and compute P~!.
4) Compute N™ and show M™ = PN"P~1.

Prove that VX € M,(C),X =Tr(X)A+B<Y =Tr(Y)AwithY =X - B
4) Solve (F') and then solve (E).

HADAMARD’s Lemma :
Let n € N* and A € M,,(C) so that Vi € [1,n], |ai;

n
> ail
=1
J#i
Prove that A is inversible.

Let (A, B) € M,(C)?, let a = Tr(A) and b = Tr(b).
Let (E) be the equation X = Tr(X)A+ B, X € M,(C).
1) We consider that a # 1, solve (E).
2) We consider that a = 1, prove that if b # 0, (£) has no solution.
3) We consider (a,b) = (1,0) until the end.
We call the second equation (F) (of variable Y € M, (C))
Hint : study Ker(A) H
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Let n>2, A € M,(K) and B = Adj(A).

% 1) We suppose rank(A) = n. Find rank(B).

LT.I< 2) We suppose rank(A) = n — 1. Find rank(B).
3) We suppode rank(A) < n — 1. Find rank(B).

~ L]
Let A € M, (K). Prove that rank(4) =1 3C € K*, 3L e M;,(K), A=CL

Euclidian Spaces
Inner products

Let E be an R-vector space

g _Dcivition

An inner product (-,-) is an map E? — R that satisfies :

o symmetry : V(z,y) € E2, (z]y) = (y|r)

o bilinearity : V(z,y,2) € B3, Y\ p) € R?, Az + uylz) = Mx|z) + u(y|z)
e positivity : Vo € E, (z|x) >0

o definiteness : Vx € E, (z|z)=0=2=0

.

Examples : . )
(Rn)Z — nR Mn(R)2 . R (C ([071]7R)) — ) R
(XY) — Saw | (AB) > Ti(ATB) (f.9) / F(Hg(t)at
=1

g _Dcivition

A real pre-hilbertian space is a R-vector space with an inner product (-, ).

EFE — ]RJ,_

We define the euclidian norm on FE :
z — |zl = V(zl|z)

We define the euclidian distance between two vectors x,y : ||z — y||

We now consider E to be a real pre-hilbertian space.

Cauchy-Schwarz inequality

V(z,y) € E%,  |(z|y)| < ||z|||ly| | with equality if and only if # and y are colinear. r
Examples
" " " b b b
> | < $ (z x> (Z y> [ tgwad < || [swrac] | [ g
i=1 i=1 i=1 ; ’ o
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Properties of the inner product and of the euclidian norm

Let (z,y) € E2.
e Triangular Inequality : ||z + y|| < ||z| + ||yl
Polarisation identities :
2(xly) = [l + ylI*> — [lz]1* - ly||?
2(xly) = ll)|* + lylI*> = llz — y|I?
Azly) = lz +ylI? — ||z — y|?
Parallelogram identity : ||z + yH2 + ||z — y!!2 =y (HIL‘”2 + Hy”z)

| 4

Orthogonality

g _D:inition

Two vectors x,y are orthogonal when (z|y) = 0. We write z L y
Two subsets A, B of E are orthogonal when V(a,b) € A x B, (alb) =0. We write A L B

Let A be a subset of E. Its orthogonal A~ is the set of all the vectors that are orthogonal to
A.

Let A C E. We have :

e Al At

e BCAteALB&s AcCBt
A” is a subspace of E
e ACB= Bl cAt
Span(A)+ = At
e zcANAt=2=0

L
If F is a finite-dimensional subspace of E then F @& F+ = E and (F+)! = F.

— [ ]
ﬁ Prove the six listed properties. ]:l

Orthogonal families, othonormal families, orthonormal bases

Let (e:)ie[1,n] be a family of vectors of E.
(i) is said to be orthogonal when Vi # j € [1,n], (e;lej) =0

(e;) is said to be orthonormal when it is orthogonal and Vi € [1,n], |lz;|| =1

‘ All orthogonal families with nonzero vectors are independent ‘

n

n
If (e;) is an orthonormal basis of E then Vo € E, z = Z(az|ei)ei and ||z||? = sz
i=1 1=1

Orthogonal Projectors

Let F' be a finite-dimensional sub-vector space of E. The orthogonal projector on F' is the
projector on F parallely to F-.
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Schmidt orthonormalisation

Let (eq,...,e,) be an independent family of E.

There exists an orthonormal family (fi,...,fn) so that Vp € [1,n], Span(ei,...,ep) =
Span(fi, ..., fp)-

Isometries and orthogonal matrices

We now consider a euclidian space (real pre-hilbertian space of finite dimension) E and n = dim E.

g _Dcinition

An endomorphism v € L(E) is said to be an isometry when Va € E, |u(z)| = ||z

Another definition is V(z,y) € E?, (u(x)|u(y)) = (z|y).

An isometry is also called an orthogonal automorphism because it is bijective.

The isometries form a group for o called O(E).

g _D:inition

A matrix O € M, (R) is said to be orthogonal when OTO = I,,.

The orthogonal matrices form a group for x noted O, (R).

A matrix O € M,(R) is orthogonal if and only if its columns form an orthonormal basis of R™.

Matrix representation of orthogonality

Let B be an orthonormal basis of E and u € L(E). The 3 following properties are equivalent :
1) w is an isometry

2) u(B) is an orthonormal basis

3) matp(u) is an orthogonal matrix

Isometries of R?2

Let u € O(R?).
. . . . cosf —sinf

If det u = 1 then it is called a rotation and its matrix is in the form Ry = .

sinf cosf
in a certain orthonormal basis.

0 .

If det w = —1 then it is called a symmetry and its matrix is in the form Sy = C.OS sin 6

sinf —cosf
in a certain orthonormal basis.
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‘ Polynomials

g _Dcinition

A polynomial on a field K is a sequence with values in K and with a finite number of nonzero
values.

We note their set K[X]. It is a K-vector space with the following laws :

o If P = (ax)ren and Q = (b)ren, P + Q = (ar + bi)ren
o If P = (ag)ken and A € K, AP = (Aag)ren

K[X] has an internal multiplication : If P = (ag)ren and @ = (bg)ken, write C' = PQ = (¢ )ken,

k
we have Vk € N, ¢, = Z a;ibp_; = Z az;
i=0 i+j=k
We define X = (0,1,0,...) = (d,1)ken. We have Vn € N, X" = (0p ) ken-
d

K[X] has a canonical basis (X"),cn and all P € K[X] can be written P = Z ap X
k=0

.

—+00
You can also write P = Z apX ¥ because the ay are 0 after a certain rank.

k=0

Let P = (ar)keny # 0. We define its degree ‘ deg(P) = max{k € N|ay, # 0}

We define K,,[X] as the vector space of the polynomials of degree smaller than n.

We define deg(0) = —o0

n
If P is of degree n € N then we can write P = Z ar Xy with a, # 0 (called the dominant
k=0
coefficient of P).

Properties of the degree

Let (P, Q) € K[X]2. We have :
e deg(P + Q) < max(deg P,deg Q)
e if deg P # deg @ then deg(P + Q) = max(deg P, deg Q)
e deg(PQ) = deg P + deg @

As a consequence of the third point, K[X] is an integral domain.

Composition

n n
Let P = Zaka and @ € K[X]. We define Po @ = Zaka
k=0 k=0

If @ is not constant then deg(P o Q) = deg P x deg @

32



8. POLYNOMIALS - 2H eloi.tanguy@polytechnique.edu

g _Dcinition

We say that A divides B (we write A|B) when B = AQ.

A unitary polynomial is so that its dominant coefficient is 1.

Two polynomials that are multiples of each other are said to be associated.

\.

Polynomial derivation

n n
Let P = Z a,X5. We define P/ = Z el
k=0 =1

We have the immediate properties for (P,Q) € K[X]? and (\, u) € K2 :
(AP +5Q) = \P' + u@, (PQ) = P'Q+QP', (PoQ) =@ x P'oQ

Leibniz’s formula

For (P,Q) e K[X]?andneN: [(PQ)™ =} (Z) PR Qn—Fk)
k=0

Arithmetic in K[X]

Euclidian division in K[X]
Let (A, B) € K[X] x (K[X]\ {0}). Then 3(Q, R) € K[X]?>, A= BQ + R with degR < deg B
Let (P, Q) € K[X]?.
A GCD (greatest common dividor) of P and @ is a polynomial D so that deg D = max{deg A :
A|P and A|Q}. and D|P and D|Q. We write P A @ the only GCD of P and @ that is unitary.
We have | AK[X] + BK[X] = (A A B)K[X]

A LCD (least common denominator) of P and @ is a polynomial M # 0 so that deg(M) =
min{deg A : A # 0, P|A,Q|A} and P|M, Q|M. We write PV @ the only LCD of P and @ that

is unitary.

We have | AK[X] N BK[X] = (A V B)K[X]

For example, let (P, Q) € K[X]? and D = PAQ. Then 3(U,V) € K[X]?, PU+QV = D (BEZOUT’s
Theorem).

A polynomial is said to be irreductible when its only dividors are constant.

Example : all polynomials of degree 1 or less are irreductible. X2 + 1 is irreductible in R[X].
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Decomposition into Irreductible Factors (DIF)

All nonzero polynomials P can be written P = AP;"* x ... x P with the P; unitary irreductible
polynomials.

ﬂ Roots
g _Dcvition

We have P(\) = 0 < (X — \)|P. By extension :

A scalar A € K is said to be a root of order p when (X — A)P|P (so P = (X — AP x Q) ), and
p is the maximum number that satisfies this.

A polynomial P of degree n is said to be totally separated when it has n roots (counted with

order of multiplicity), so P = a H(X - \i)

=1

Characterisations of the root order

|

A € K is a root of order p of P € K[X] if and only if :

1) 3Q € K[X], P = (X — M)PQ with Q(X) # 0.

This allows to prove that if \ is a root of order p > 1 of P, it is a root of order p — 1 of P’.
Another characterisation for P # 0 : 2) Vk € [0,p — 1], P®()\) =0 and P®)()\) # 0.

Too many roots

j

If a polynomial P € K,,[X] has n + 1 roots then P =0

As a consequence, if a polynomial P has an infinite amount of roots then P = 0, and if P and
(@ have the same values at an infinite amount of points then P = ().

Gauss’s theorem

Let P € C[X]. Then P is totally separated.

l'

Root-coefficient relations

n n
Let P = Z ap X" with a, # 0, we suppose P = \ H(X - \i).

k=0 i=0
n n
ap—1 aop
We have Z)\i i and ];[ Ai = (—1)"£
=1 i=1
ap—
We have more generally for all k£ € [1,n], Z D ooy, — (—l)kn—k
an

1<ir<..<ip<n

b c
Example : let P = aX? +bX + ¢, we have 1 + 79 = —— and 7179 = —.
a a
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WY Bases of K[X]

Echelon families

l

If (P;)ies is a family of nonzero polynomials

of mutually distict degrees, it is independent.

Taylor’s formula

l

Let a € K and P € K,[X]. We have | P =
k

n Pk (q

=0

( )(X —a)*

k!

Lagrange interpolation

|

Let (zo, ..., z») be mutually different scalars.

n X—xi
Vk e [0,n], |Li=
[0,n] k g)$k—xi
itk

(Lk)o<k<n is a basis of K,[X] with VP € Ko[X], |P = P(x)L

We define the associated LAGRANGE polynomials :

They satisfy V(k, j) € [0,n]?, Ly(z;) = ok

LN

GRAM’s matrix. Let E be a real prehilb
((xi\mj))(m)e[[l’n]]z and g(z;) = det G(z;)

ertian space and (z1,...,x,) € E™. Let G(z;) =

1) Find A € M,(R) so that G(e;) = AT A. Use this to prove :

a) (z;) is independent < g(z;) # 0

L
< b) rank(z;) = rankG (Hint : prove KerG = KerA)
X
L 2) Let F be a finite-dimensional subspace of E. Let (ey, ..., e,) be a basis of F'. Let x € E.
We define the euclidian distance between z and F' d(z, F) = || — p(x)|| were p is the
orthogonal projector on F.
T, €1, ..., €
Prove that d(z, F) = u
g(et,....en)
1) OT decomposition. Let A € GL,(R). Show 30 € O,(R), 3IT € T, (R), A=0T
I Hint : use SCHIMDT’s process.
< n
LT.I< 2) HADAMARD's inequality : prove that |det A| < H 15|
j=1

(where the C; are the columns of A)
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TCHEBYCHEV’s polynomials.

1) Let n € N. Prove that 3!T;, € R[X] so that V8 € R, T, (cosf) = cos(nf)
2) Find the dominant coefficient of T}, and its degree.

3) Prove that Ty,4yo —2XT)41 + T, = 0.

4) Factorise T,.

VANDERMONDE’s matrix. Let (z1,...,z,) € K". Consider :

anl[X] —

P(x1)
.and @ p . i

P(ay)

1) Prove that ¢ is an isomorphism if and only if the (x;) are mutually distinct.
We now consider K =R and (z1,...,2,) = (1,...,n).

2) Explain the link between ¢ and V(1,...,n) and use ¢ = ¢! to compute V(1,...,n)" 1

Ex 44 X
=
&8
Il
’—2733 8 8
| moe —
A
1\23%3 8 8
| N T
A
8
3? :&M:H i
iy
~
S

Calculus

BN Complements on sequences

Let K=R,C

€ — 0 definitions

Let (u,) € KN :
¢up——1€K & Ve>0, INEN, Va2 N, |un—I<e

e f K=R,uy ——+0 <& VM>0, AINeN, Vn>N, wu,>M

n— —+00

Monotonous convergence theorem

Let (u,) € RY a monotonous sequence. (uy,) has a limit in R = R U {400, —00}.

Al

g _Dcinition

An extraction ¢ is an injective map N — N.

If ¢ is an injection then Vn € N,  ¢(n) > n. If u, — [ then ug,q,) — 1.

©

A sub-sequence of (u,) is a sequence (u,,)) where ¢ is an extraction.

Bolzano-Weierstrass Theorem in R

All bounded sequences of R have a convergent subsequence.
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Complements on functions

We consider a function f: X — K with X C K.

g _D:inition

Let a € R,. f is a-lipschitzian when V(z,y) € X2, |f(z) — f(y)| < alz — y|

| 4

Let (a,b) € X x K.
Wesaythatf(x)x—_;jbwhen‘v’e>0, 36>0, VeeX, |x—a|<d=|f(x)—-b<e

We also define limits at oo and to oo when K = R. For example :

flz) —— 40 & VM >0, ImeR, Ve<m, f(z)>M
r—r—00

Sequential characterisation of the limit

Let f: X — R, acX,beR.

flx) —— b < V(z,) € X" so that £, ——— a, f(zn,) —— b
r—ra n—>--+4o00 n— -+00

\.

Monotonous limit theorem '

Let —oo <u < v < +00 and f :Ju,v[— R monotonous.

Then f has a limit (in R) at v~ and a limit at u*.

Continuity

Let f: X — K. f is said to be continuous at a € X when f(z) — f(a).

f is said to be left-handedly continous a a when f(z) —— f(a)
r—ra—
(right-handedly : f(x) — f(a))
Tr—ra

If f is continuous at both sides of a then it is continous at point a.

f is said to be continous on X when it is continous at every point of X.

Other forms of continuity

f is said to be uniformly continuous when :
Ve>0, 36>0, VYaeX, Vrecla—d,a+d], |f(z)—fla)<e

f is lipschitzian = f is uniformly continuous = f is continuous.

Heine's theorem

Let f : [a,b] — K continuous. Since [a, b] is a segment, f is uniformly continuous.

Intermidiate values theorem (IVT)

Let f : [a,b] — R a continuous function. f reaches all values between f(a) and f(b). r

37



9. CALCULUS - 4H eloi.tanguy@polytechnique.edu

Reached bounds theorem

Let f : [a,b] — R continuous. Since [a, b] is a segment, f reaches a minimum and a maximum. r

Complements on Differentiation

g _Dcinition
I\{a} — K

Let f € F(I,K) and a € I. We define the slope at a of f : S, : { f(z) — f(a)
x _

When they exist, we define f/(a) = xlii>na5a(:c), fi(a) = lim Sy(x), fl(a) = lim S,(z)

r—a~ z—sat

Reciprocal bijection

Let f continuous and strictly monotonous on I, inducting a bijection from I to J = f(I). Let
g : J — I its reciprocal bijection. Suppose that f is differentiable at a.

"g is differentiable at b = f(a)" <= f’(a) #0 In that case, ¢'(b) = 7(a)

Rolle’s theorem

Let a < b, f :[a,b] — R continuous on [a,b] and differentiable on |a, b] so that f(a) = f(b).
Then e €]a,b], f'(c) =

N

Mean value theorem

Let f : [a,b] — R continuous and differentiable on ]a, b[. Then 3¢ €]a,b], f'(c) =

Mean inequality

Let f : [a,b] — R continuous and differentiable on |a, b[.
If 3K > 0 so that |f’| < K, then f is K-lipschitzian.

Successive differentiation

Let I be an interval of R.

g _D:inition

f I — K is said to be of class D" when it is n times differentiable. We note its k-th
derivatives f*) (k € [0,n]). We write f € D™(I, K).

f: T — K is said to be of class C" when it is n times differentiable and f(™ is continuous.
We write f € C"(I,K). If f is infinitely differentiable, we write f € C*°(I,K).

Leibniz’s formula

Let (f,g) € C"(I,K)[". Then fg is of class C" with | (fg)™ Z (Z) 7=

38



9. CALCULUS - 4H eloi.tanguy@polytechnique.edu

Taylor with integral remainder

Let n € N, f € C""(I,K) and a € I. We have :

n (k) G yn
Veel, f(x)= Z f (a)($ _ a)k +/ (z n!t) f(n—i—l)dt

!
b

a

|

Taylor-Lagrange inequality

Let f € C"*(I,K), a € I and x € I. Let M be an upper bound of | f1)|. We have :

\:L‘—a]""'l
<M-————--
- (n+1)!

n £y
160~ > e - o

k=0

BN °

f

0

Let f € C°(R4,R4) so that e
Prove that f has a fixed point a (f(a) = «).

Let f € C*(R,R) so that f(0) = f(1) = ... = f(n). Prove that f(® has a zero.

a) Limit of the derivative theorem : let ] C R an interval, a € I and f € C°(I)
differentiable on I'\ {a} so that f'(z) ——= A€ R.

r#a
Prove that f is differentiable at a with f/(a) = A
R — R
. . . . —_ 1 .
b) Application : let f : N e =2 if x#0
0ifx=0

Prove that f is of class C! on R.

DARBOUX’s theorem : Let f € D!([a,b],R) and y between f’(a) and f’(b). Prove that
Je €la, b, f'(c) =y.
Hint : Consider the slopes at a and b.

1) MVT generalisation : Let a < b two real numbers and ¢, ¢ : [a,b] — R continuous
on [a,b] and differentiable on |a, b].

Prove that 3¢ €]a,b], (p(b) — ¢(a))'(c) = (¥(b) — (a))¢'(c)

2) L’HosPITAL’s rule : let f,g : [a,b] — R continuous on [a,b] and differentiable on

Ja, b], with ¥z €a,b], g'(x) # 0, f(a) = g(a) =0 and A € R: 5(?

a) Prove that Vz €]a,b], g(z) # 0.
f(z)

g(z) = e

b) Use the first question to prove that

Exa0 N Ex48 [ Ex47  JEx 4] Ex 45

T Wl R EE EE
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-l:ll Norms

Let K=R or C a field and E a K-vector space.

g _D:vition

A norm is a map N : E — R, verifying :
e homogeneity : V(\,z) e Kx E, N(A\z) = |\N(x)
e triangualr inequality : V(z,y) € E?, N(z+y) < N(x) + N(y)
e separation Vx € B, N(z)=0=2=0

B2 — R,

We often note norms ||-||. Its associated distance is d :

\.

Examples :

n
e £ =R": euclidian norm ||z||2 = Z:L’ZQ, infinite norm ||z||sc = max|x;|
\ i=1 ‘

b
e E=C%[a,b]) : euclidian norm || f||o = /f2, infinite norm : || f|lec = sup |f(x)]

4 z€[a,b]

e If N is a norm on F and u € L(F) is injective, then N(u(-)) is a norm on E.

g _Dcinition

Let a € E and r > 0.

e The open ball of center a and radius r is B,(a,r) = {z € E|d(a,z) < r}
e The closed ball of center a and radius r is Be(a,r) = {x € E|d(a,x) <r}
e The sphere of center a and radius r is S(a,r) = {z € E|d(a,z) =r}

\

g _Dcinition

Let A# @ C E and = € E. The distance between x and A is d(z, A) = inf{d(z, a)|a € A}.
The diameter of A is diam(A) = sup{d(a, b)|(a,b) € A?}

A is bounded when 3M >0, Va€ A, |z <M

Let u: E — F. u is bounded when 3M >0, Vx € E, |u(z)]| <M

Norm comparison

Let N1 and Ny be two norms on E.
Ny is dominated by N when Ja € R : N; < alNs

N; and N, are equivalent when 3(a, ) € (Ri)Q : aNy < N, < 8NV
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iI0Y Topology of a normed vector space

Adherence values

Let (u,) € EN. An adherence value of (u,) is a limit of a subsequence of (u,). Let A € E :

A is an adherence value of (u,) <= Ve>0, Vno€N, In>ng, d(up,A) <e

Let O C E. O is said to be open when Vz € O, 3r >0, By(z,r)C O.
Any union of open parts is open, a finite intersection of opens is open.

Closed parts

Let C C E. C is said to be closed when E \ C is open.
A finite union of closed parts is closed, any intersection of closed parts is open.

Let a € E. V is a vicinity of @ when 3r > 0, B,(a,r) C V.
The set of the vicinities of a is written V,.

A

Let AC E, and a € E. a is an interior point of A if A is a vicinity of a.
the interior of A, written A or Int(A) is the biggest open part included in A.

A is also the set of the interior points of A.

Let AC E and a € A. a is adherent to A if Vir >0, B,(a,r)NA# 2

The closure of A, written A or C(A) is the smallest closed set containing A.
A is also the set of all the adherent points to A.

A is the set of the limits of the convergent sequences of A.

A is closed < all convergent sequences of A converge in A.

g _Dcinition

Let AC Fand D C A. D is said to be dense in A if one of the following equivalent properties
is met :

1) AcD
2)Vae A, Vr>0, FxeD, d(z,a)<r
8) Yac A, 3d,) €DV, d,—a

g _D:inition

Let A C E. The boundary of A, written A is 04 = A\ A.
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Y  Continuity

Let E, F' be two normed vector spaces and A C E.

g _Dcivition

Let f: A— F,a € A,l € F. We say that f — [ when one of the two equivalent properties is
a
met :

oYV eV, IWeV, fWNACV
e Y(a,) € AN so that a, — a, f(a,) — 1

R?} — R

Example f : T is not continuous at (0,0
ple f (z,y) 1;2—_{3_13/2 if (z,y) # (0,0),0 otherwise (0,0)

g _Dcivition

f:A— Fandk <0. f is k-lipschitzian when V(z,y) € A2, d(f(x), f(y)) <k d(z,y)
If f is linear then it is k-lipschitzian iif Vo € A, |u(z)| < ||z||

Image by a continuous map

Let f: A — F continuous. Let z € A, Vy(;) € Vy(s), O an open of A and C' a closed of A.
o« 17 (Vitw) € Ve
e f71(0) is open
e f71(0) is closed

g _Dcinition

f A — F is uniformly continuous when :

Ve >0, In>0, V(z,y)eA?, d(=z,y) <n=d(f(z),f(y)<e

Continuity of linear maps

Let u € L(E, F). u is continuous < 3k >0, Ve e E, |u(x)| <k|z|

Let F be a normed vector space.

g _Dcinition

A set K C FE is compact when all sequences of K have an adherence value in K.

All compacts are closed and bounded.

If K is compact and C' is a closed subset of K then C' is compact.

Bolzano-Weiestrass Theorem

The compacts of R™ are the parts that are closed and bounded. r
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A criteria for convergene

|

Let K a compact. If (u,) € K~ has only one adherence value [, then wu, — .

|

Image of a compact by a continuous map

Let K a compact and f: K — F continuous. Then f(K) is a compact.

Reached bounds theorem

|

Let K a compact and f € C°(K,R). Then f is bounded and reaches its bounds.

Heine’s theorem

Let K a compact and f € C°(K, F). Then f is uniformously continuous.

Norm equivalence

Suppose E of finite dimension. Then all norms of E are equivalent.

1) Let (e, ...,e,) a basis of E. We define the norms :

K — R,

E — Ry -

. o . n .

N on E : v — inei s o and |||, on K" : : s max|ai]

i=1 ‘ . ’

n

K" — E

I
The map f : ) - ime' is an isometry from (K", ||-||..) to (E, No).

o 1%

i=1
Tn

Since Vo € E, Nuo(f(x)) = ||z||, [ is continuous.

Since K = S(0,1)gn is compact and f is continuous, | f(K) = S(0,1)g is compact

2) Let N a norm on E, we shall prove that N and N, are equivalent.

Let z = zn:a:iei € E.N(z)=N (Z:L;:L‘Z@) < (iN(eQ) Noo(z) Let o = zn:N(ei) > 0.

=1

We have So N is continuous on (E, Nu) :

i=1

Y(z,y) € E?, |N(z)—N(y)| < N(z—y) < aNy(z—y) so N is a-lipschitzian so continuous.

Then N is continuous on the compact S = S(0,1)g n..)

som = iréfN is reached at a certain z € S : m = N(z) > 0. (reached bounds theorem)

Therefore Vo € S, N(z) >m

Let z € E\ {0}, and u =

Noo(z)

Therefore “v’x €EFE, MmNy <N <aNy ‘ so N and N, are equivalent.

€S. N(x) = N(Noo(z)u) = Noo(z)N(u) > Noo(x) X m

Continuity of linear maps in finite-dimensional spaces

Let u € L(E, F') where E is finite-dimensional. Then w is continuous.
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TD

F

RQ N R
Let f € CY(R,R) and let F : f(z) = f(y)

(z,y) +— Ty if z £y, f'(z) otherwise

Prove that F' € CO(R?).

Subordinate norms. Let E and F two normed vector spaces. We note L.(E, F') the
vector space of the continuous linear maps from E to F. Let u € L.(E, F).

We consider A ={k e Ry :Vz € E, |u(z)| <k|z|} and ||u|| = inf A.
1) Prove that Vo € E, |Ju(z)|| < ||ull|z||

lu()ll _

2) Prove that [||ul| = sup———— = sup |lu(z)]|
z#£0 ||:E|| [|z||=1

3) Prove that ||-||| is a norm on L.(E, F).
4) Let G another normed vector space, u € L.(E, F) and v € L.(F,G).

Prove that [[[v o ulf| < {[lulfv]]-

Two classics :

1) Let K=R,C, M € M,(K) and P = det(M — X1,)

Noticing that M is inversible < P(0) # 0 and find (A4,) € GL,(K)N so that A,, — M
2) Prove that O,(R) is a compact.

Let K a compact and C7 D Cs D ... a sequence of non-empty closed parts of K that are
fitted together.

Prove that ﬂ Cn, # 2.
neN

N W T

IBR  Taylor Expansion

g _Dcinition

e We say that u,, = o(v,) when after a certain rank we can write u,, = v,w, with w, — 0.

u
If v, # 0 after a certain rank, another definition is — —s 0
Un

e We say that u, = O(v,) when after a certain rank we can write u,, = v,w, where (wy,) is
bounded.

U
If v, # 0 after a certain rank, another definition is (—n> is bounded after a certain rank.
Un

o We say that u, ~ v, when after a certain rank we can write u,, = v,w, with w, — 1.

u
If v, # 0 after a certain rank, another definition is — — 1
Un
~ is an equivalence relation.
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Let f: X — Kandaec X

g _Dcinition

o We say that f(z) = o(g(z)) at the vicinity of @ when at the vicinity of a we can write
f(x) = g(x)h(x) where h(zr) —— 0.

rT—ra

When g(z) # 0 at the vicinity of a, another definition is @ —0
g($) T—ra

e We say that f(z) = O(g(z)) at the vicinity of a when at the vicinity of @ we can write
f(x) = g(x)h(z) with h bounded.

When g(x) # 0 at the vicinity of a, another definition is i is bounded at the vicinity of a.
g

e We say that f(x) ~ g(z) at the vicinity of a when at the vicinity of a we can write
f(x) = g(x)h(x) where h(z) —= L
f(@)

When g(z) # 0 at the vicinity of a, another definition is —— —— 1
g($) r—ra

\.

Compared growths
4

Let o, B > 0. We have when * — 400, In®(z) = o(2”) and 2% = o (eﬁx)

When n — 400, we have : e*” = o(n!) and n! = o(n").

Logarithmic comparison

Un+1 u
" < 2 Then u, = O(v,)
Un+1 Un

Let (u,) and (vy) two strictly positive sequences so that ACR,

Finding limits :

1
. (14+4H)H+e -1
T

SHln

In(1+z)\"
° <1n(m)> when z — 400

Taylor expansion

f has a TAYLOR expansion at the order n at the point a ("I'E,(a)") when there exists
(o, .-, cn) € K1 such that at the vicinity of a :

1 - k n
— has a TEy(n) for all n : m—kz;oa: + o(z").

Characterisations for n =0, 1

f has a TEy(a) < f is continuous at a.  f has a TFE;(a) < f is differentiable at a. r
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Properties

e Taylor expansions are unique.
e [f a function is even, its odd terms are 0. If it is odd then its even terms are 0.

e If f g have a TE,(a) then their linear combinations and product also have a TE,(a).

N

Taylor expansion of an antiderivative

Taylor-Young formula
Let f € C"(I,K), and a € I. Then f has a TE,(a) given by :
n_ (k) n_ (k)
fay =S 7 k'(a)(x —a)f to((w—a))|for h—0: fla+h) =3 f k‘(a)hk + o(h™)
k=0 k=0

1
= =14 z+at+... +a" +o(z")

l—=

1 -1 2 ( )n (n)

1+m— -+ — ...+ (—x) +olr
a(a—l)l_2+a(a—l)(a—2)13+_..+a(a—1)..7:&1(cx—n+l)$n+o(ﬂ:n)

VaeC, 1+z)*=1+az+ 5 G
T T ‘1
1':1 - = - n
e +:c+2 6+ +n!+o(m)
1‘2 :»"‘3 LU4 :L‘k
+ -+ --+(—1)"7+0(x")

3 T

[®]

m(l+2)=o- T+ -2
cos(z) =1 — %2 + g — (1) (z:;! + oz t)
inle) = %3 i 1% —eet (2:::1:)! + o)
ch(z) = 1+%2+;_Z+"'+%+°(3’2"H)
sh(z) :m+%3+%+...+(;:?7::)!+o(m%+?)
arctan(z) :xf%SJr%s ,i;Jr __'(71)2n+1%+0(m2n+2)

_ 1,3, 2 4 77 7
tan(a:)ferga: tE® b gE® + o(z")
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Uniform Convergence

Let E and F two normed vector spaces and A C E. Let (f,) a sequence of maps from A to F.

Simple convergence

We say that (f,) converges simply (CVS) towards f when : Va € A, f,(a) — f(a)
This can be written : Ya € A, Ve >0, 3n, €N, Vn>n,, |fula)— flz)||<e

Uniform Convergence

Let X C A. We say that (f,) converges uniformly (CVU) on X towards f when :
Ve>0, INeN, Vn>N, VeeX, |faolx)— flzx)|<e
Other definition : sup||fn(z) — f(z)]] e 0 (With f,, — f bounded on X)

zeX e €9

Other definition : There exists (ay,) € RY such that ACR, ||f,(z) — f(z)|| < oy, and o, — 0

. J

Uniform convergence on A for bounded functions A — F' is the same as convergence in the normed
vector space (B(A, F'), Noo)

Let a € A, and (f,,) CVU on A towards f and such that Vn € N,  f,(x) — ekl

If (I,) converges in F, or f(z) converges in F' when x — a, then the other limit exists, and :

i J Jo(e) = D T fo(2)

Consequence : if f is a uniform limit of continuous functions then it is continuous.

Double limit theorem

We suppose here that F' is finite-dimensional.

Let (fn) CVU towards f and such that Vn € N,  f,(z) — ey, € 4T

Then (I,,) converges, f has a limit at a and both limits are the same.

Consider a sequence (uy,) of bounded functions from A to F.

We say that Zun converges normally (CVN) when the series Z Noo(uy) converges.

If a series converges normally and F' is finite-dimensional, then Z up, CVU on A.
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Limit under the integral

CVU
Consider a sequence of functions (f,) on a segment [a, b] such that f, V)

%f

n—>-+4o00

b b
Then f is continuous and / fu(t)dt ——— / f(t)de

n—-+4oo

For series, if Z un, CVU on [a, b] with each u,, continuous on [a, b], then :

b oo oo b
The sum is continuous, the series of the integrals converges and / Z up (t)dt = Z / up, (t)dt
w n=0

| 4

Uniformity and antiderivation

Let (fn) a sequence of continuous functions on I CVU on all segments of I towards f. Let a € T
and g, the antiderivative of f,, such that g,(a) = 0.

Then (g,) CVU on all segments of I towards g, the antiderivative of f such that g(a) = 0.

Uniformity and differentiation

Let (gn) € CY(I)N CVS towards g, and with (g/,) CVU on all segments of I towards f.
Then g is of class C' on I, ¢’ = f, and (g,) CVU on all segments of I towards g.

To prove that a limit f of (f,) € CP(I)N is itself of class CP, check :
o Vk € [0,p— 1], ( é’“’) CVS on I
° (f,ﬁ”)) CVU on all segments of I.

Differentiating a series

Let Z uy, a series of C1 functions CVS on I. If Zu; CVU on all segments of I, then :

d “+o0o “+o0o
vVt eI, T (T;O un(t)> = Z ul,(t) and Zun CVU on all segments of 1.

n=0

\.

To prove that a sum Z uy, of CP functions is itself of class CP, check :
o Vke[0,p—1],> ulf) CVSon I

. Z ulP) CVU on all segments of 1.
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TD

F

For n € N we study (E,) : €* + z = n.

1) Prove that for all n in N, (E,,) has a unique solution on R called w,,.
2) Prove u, — +00

3) Prove u, ~ In(n)

1 1
4) Studying v, = u, — In(n), prove u,, = In(n) — n(n) +o ( " n))

2w

Compute I(r,z) = /
0

dt

—— for (,2) € R x C* with r # |z].

Hint : use geometric expansion

Ry, — R
Let f: RO |
& 7 Z 2
s 1+ nx

1) Prove that f € C*(RY)

2 +oo 2
2) Prove that when x — +o00, f(z) ~ o <Z 3= F)
x

n=1

Study the convergence and uniform convergence of (f,)

R+—> R

n
* . T
where Vn € N*,  f, : " (1 _ _) if z €[0,n], 0 otherwise
n

IX] Series

Definitions on series

|

Consider a sequence (uy,). It is the term of the series Z Up,-

N
The partial sums of Z u, are the Sy = Z Uy, -
n>ngo n=ng

+oo
The the sequence (Sy) converges, we say that the series converges and we define its sum Z Uy,

n=ng

+o0
The remainder of a convergent series is Ry = Z Unp,
n=N-+1

A series converges absolutely (CVA) when Z |un| converges. This implies simple conver-

gence.
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IKRN  Summability

g _Dcinition

Let I a set and (a;)ie; € K!. We say that (a;) is summable when  sup Z la;| | € R.
J finite CI \jog

If the a; are positive, one can always write Z a; € RU {400}
el

Group summation for positive terms

Let (a;);er positive real numbers, and (1)) cp a partition of I. Then : Zai = Z (Z ai)
el AeAN \i€ly

And (a;);er is summable < every (a;)icr, is summable of sum sy and (s))xep is summable.

Group summation

Let (a;)ier @ summable family, and (I))xea a partition of 1. Then : Zai = Z (Z ai)
iel XeA \iel

And every (a;)icr, is summable of sum sy with (s))xea summable.

+00 (_1)n
Example :

Fubini’s Theorem

(ap,q)(qu)eNz is summable < one of the 3 following properties is satisfied :

1) For all p € N, the series Z lap q| converges and has a sum s, such that Z sp converges.
q 2

2) For all ¢ € N, the series Z lap,q| converges and has a sum s, such that Z 54 converges.

P q
3) The series of term s, = Z lapq| converges.
ptg=n
400 +00 400 +00 +00
In this case, Z apg = Z Z Gpq = Z Z Gpq = Z Z Gp.q
(p,q)EN? p=04¢=0 q=0p=0 n=0p+q=n
(_1)p+q

Example : E
2r34 1
(p.q)EN? HMp+a+l)

Cauchy product
| 4

Let Z an and Z b, two absolutely convergent series.

400 400 +o00
Then the series of term u, = Z apby CVA and (Z an> (Z bn> = Z ( Z apbq)
n=0

p+q=n n=0 n=0 pt+qg=n
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IKWA  Series convergence criteria

Comparing terms

Let (uy) and (v,) two complex sequence with (v,) positive.

o If Zvn converges and u, = O(vy,) then Zun CVA (same with o)

o If u, ~ v, then Z u, and Z v, have the same nature.

Un+1 < Un+1

Un Un

Riemann'’s reference series >

1
Z — converges < a > 1.
nOl

n>1

o If after a certain rank with w,, v, > 0 then u, = O(vy,).

Method :

o If da>1, n%u, — 0 then Zun converges.

e If nu, — 400 then Zun diverges.

In”(n)

nOL

Example : Z

D’Alembert’s rule

Un+1
— 1

If u,, > 0 after a certain rank and
Un,

If I < 1 then Zun converges.  If [ > 1 then Zun diverges.

Comparing with an integral

Let f piece-wise continuous, positive and decreasing on [ng, +oo[.

Then the series Z / f(t)dt — f(n) | converges.
n2no+1 \ 4

noq nl—o ‘|i0 1 1 n Z 1
Examples : 1) —~ (a < 1), and —~—n% " when o > 1, 2) =
ke 1-a po ke (a—1 =, nn%(n)

Alternated series criteria

If u, — 0, |uy,| decreases and (—1)"u,, is of constant sign,

Then Z up, converges and Vn € N, |Ry,| < |up41]

="
Example : u, = — with a >0

n® 4+ (—1)

o1
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>

p(n+1)—1
Let ¢ an extraction with ¢(0) = 0. Let v, = Z W
p=¢(n)
p(n+1)—1 +o0 400
If Z [up) PR 0, and Z vy, converges, then Z u, converges with Z U, = Z s
p=p(n) n=0 p=0
2inm
e 3
Example : Z
n>1

Antiderivative technique : if you study Z f(n), consider F' an antiderivative of f and try to prove

that the series of term f(n) — (F(n+ 1) — F(n)) converges absolutely.
That way, Z f(n) converges < F'(n) has a finite limit.

ez\/ﬁ

Example : Z

n>1

Summing comparisons

Convergent case

Let (uy) and (vy,) two complex sequences.

‘If vy, is the positive term of a convergent series | :

e u, =0(v,) = Ry(u) = O(R,(v))
o u, =o(vy) = Ry(u) = o(Ry(v))
o uy ~ vy, = Ry(u) ~ R,(v)

In(k+1) —In(k =x K
Examples : u; = a( 12 a( ), Z ok
k=n+1

Divergent case

Let (uy) and (vy,) two complex sequences.

‘If vy, is the positive term of a divergent series | :

o u, = O(vy,) = Sp(u) = O(Sp(v))
® up = 0(vp) = Sp(u) = o(Sp(v))
® Uy ~ Uy = Sp(u) ~ Sp(v)

Examples : CESARO summation, inductive sequence study : up4+; = iArctan(un)
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D

F

Harmonic series :

n—1
1 1 1
Tet H, = — >2). P that 3y e R, H, =1 - — =
et H, kz::lk(n_) rove that 3y n(n) + 7y 2n+0<n>

Consider the sequence defined by ug €]0, 5] and Vn € N, u, 41 = sin(uy)

1) Prove u,, — 0.

1 . .
«— — — —— 1> 0. Find an equivalent of vy,.

2) Let (v,) € (R%)" and « € R such that
Un+1 Up,

. 3
3) Using 2), prove that wu, ~ \/:

n

4) Find the second term in the asymptotical expansion of —o
un

Raabe-Duhamel criteria :

: " Un41 a 1
Let (uy) a strictly positive real sequence such that =1——4o—].
Up n n

1) Comparing with v, = n=?, prove that if o > 1, then Zun converges, and that it

diverges if a < 1.

Up+1 @ 1 K
2) We now suppose =1——+0| — |- Prove that 3K >0, wup, ~ —
U, n n n
Abel transformation :
Let (ag), (bx) € CY, and (Ag) such that Vk €N, ap = Ay — Ap_1.
q q—1
1) Prove that for all p < ¢, we have Z apby = Agbg — Ap_1bp + Z Ay (b, — br41)
k=p k=p
einO
2) Study with # e R, >0

IV} Integration

Reminder : fundamental theorem of integration

I — K
0 . z . . . . . _
Let f € C°(I,K)anda € I. F': N /f(t)dt is the antiderivative of f with F'(a) = 0.
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g _Dcinition

f i [a,b] — Kis said to be piecewise continuous (PWC) when there exists (ao, ..., a) such
that a = a9 < ... < a, = b with :

for each i € [1,n], f is continuous on ]a;_1,a;[ and f(z) —— AN €K, f(z) —— p €K
z—a; | z—a;

A function is said to be piecewise continuous on an interval [ if it is PWC on every segment of
I. We write f € PWC(I)

INWN  Generalised integrals on [a, +00]

Let a € R and f € PWC([a,+0o0)

g _Dcinition

+o0 z
We say that / f(t)dt converges when lim / f(t)dt exists.
xr
a a

—>+00

In case of convergence, all usual integration theorems apply.

+o0o +00
If f is positive and / f(t)dt diverges, we write / f(t)dt = 4o0.

Comparisons

Let (f,g) € PWC([a, +c[)? positive functions.
—+oo +oo
If f = 0O(g) at +00, then the convergence of / g(t)dt implies the convergence of [ f(t)dt.
+oo +oo
If f ~ g at +oo, then / f(t)dt and / g(t)dt are of the same nature.

a

Riemann comparison

|

+00
Let a € R. / % converges < o > 1

1
Let f € PWC([a,+0o0[) a positive function.

400
1
If 3a > 1 so that f(t) = O (t_a> at +o00, then / f(t)dt converges.

+o0
If tf(t) ——— +o0, then / f(t)dt diverges.
t—+o00

. J

+oo +oo

o —t dt
Examples : t%e™ ", —_—
to In?(t)
1 2

54



14. INTEGRATION - 4H eloi.tanguy@polytechnique.edu

Integrability

+o0 TEe
f € PWC([a,+0o0]) is integrable when / | f(t)dt converges. In that case, / f(t)dt converges.
a a

You can also say that the integral converges absolutely.
When there is only one interval with only one improper bound, you can just say "integrable". Otherwise
you must say "integrable on ...".

Comparisons

Let (f,g) € PWC([a,+oo[)? where g is positive and integrable.
If f=0(g) at +o0, then f is integrable.
If | f| ~ g at 400, then f is integrable.

E 1 70 A 701 A Y
xample : ——dt, n —
p IENCION, Vi

Using a series

Let (b,) an increasing sequence of [a,+oo| with by = a and b, — +o0o. We suppose that

bn
Z / f(t)dt converges.
n>1
= bn—1
/ f(t)dt converges and / f()dt = Z f(t)dt when one of these points is verified :
a a n=1 n—1
e f is positive
bp
o Jdim [ 17 =0
bn—l

o f(x) PR 0 and (b, — by,—1) is bounded

e f has real values and has a constant sign on each [b,_1, by]

+oo
sint
Integration by parts : / tTdt with 0 < a < 1.
1

IWA  Generalised integrals on [a, b[ or |a, b]

b T
Let f € PWC([a,b[,K). We say that /f(t)dt converges when limb/f(t)dt exists in K.
r—>

a
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Riemann integrals
b b

dt dt
Let a < b and a € R. The integrals /— and /— converge < a < 1.
(b—t)° (t—a)

a

b
Let f € PWC([a,b],K). If 3o < 1 such that limb(b —z)*f(z) =0, then /f(t)dt converges.
z—>

a

Generalised integrals on an open interval

Let —co<a<b<+o00
b

b @
Let f € PWC(Ja, b, K). /f(t)dt converges when Jc €la, b : /f(t)dt and /f(t)dt converge.

c

b

b c
In that case, /f(t)dtz/f(t)dt—i—/f(t)dt

C

e a7 241
) _ —1_—t i
Examples : I'(z) = / t*" e dt, / o / sintIn <t2—1> dt
0

0 1

Computing integrals

Let —c0o <a<b< +oc0

Integration by parts
4

b b
Let (f,g) € C'(Ja,b[)?. The existence of two of the terms /f’g, [fg]g, /fg' implies the
a a

b b
existence of the third. In that case, /f’g = [fg]® - /fg'

. J

NEVER USE THIS FORMULA TO PROVE CONVERGENCE, always compute antideri-

vatives of the form / ©(t)dt. This equation is for computing a convergent integral.

1

Example : /
0

In(1 — t2)

et

Changing variables

Let Ja,b[ and ]a, B[ two open intervals, f € C%(a,b[,K) and ¢ :]a, B[—]a,b| of class C! a
strictly increasing bijection.

b B
Then / f(t)dt and / fle(u))¢'(u)du are of the same nature and equal when one converges.
a «
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IVRY Integration of comparison relations

Let —co<a<b<+o00
Convergent case : comparison of the remainders

4
Let (f, ) € PWC([a,b],K)? with ¢ positive and integrable on [a, b[.
b b
If f = O(p) at the vicinity of b, then f is integrable on [a, b[ and /f =0 /go (same for o)
x x
Let (f,g) € PWC([a,b],K)? both positive with f ~9g and g integrable on [a, b[.
b b
Then f is too With/frv/g
x xX
T +oo
. . 1 —cost . 2
Example : two-term asymptotical expansion of / Wdt’ equivalent of / e v dt
0 x
Divergent case : comparison of the partial integrals
4
Let (f,p) € PWC([a,b],K)? with ¢ positive and non-integrable on [a, b].
x xX
If f = O(p) at the vicinity of b, then /f =0 (/ gp) (same for o)
a a
Let (f,g) € PWC([a,b[,K)? both positive with f ~9g and g non-integrable on [a, b].
x x
Then f is also non-integrable with / f~ / g
a a
+o00 _t
e
Example : expasion of F'(x) = / Tdt when z — 07
x
IVXY Parametric Integrals
Let I an interval of R.
Dominated Convergence Theorem
| 4

Let (f,) a sequence of PWC functions on I. If :

e (fn) converges simply towards f € PWC(I)
e There exists ¢ integrable on [ with Vn e N, Vte I, |f.(t)] < p(t)

n—-+o00

Then the f, and f are integrable on I with /fn(t)dt  — /f(t)dt
T T

o7
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“+o00

Example [, = /
0

Integration term by term

Let Z uy, a series of functions with each u, € PWC(I). If :

de
————dt
1+ t2 +tnet

e FEach u,, is integrable on 1

. Z uy, converges simply on I towars S € PWC(I)

. Z / |un| | converges
T

+oo +o0o +oo
Then S = Z Uy, is integrable on I with / (Z un(t)> dt = Z /un(t)dt
n=0

n=0 T = n=0 T

Continuity of a parametric integral

Let X a non-empty part of a finite-dimensional normed vector space F and T" an interval of R.
Let f: X xT — K. If :

o Ve X, t+— f(x,t)is piecewise continuous on T’
o VteT, x+— f(x,t)is continuous on X
e There exists ¢ : T' — R integrable on T so that V(z,t) € X x T, |f(z,t)] < p(t)

Then g : x — / f(z,t)dt is defined and continuous on X.
T

You can replace the third point by "Va € X, there exists a vicinity V of a and ¢ : T' — R integrable
on T so that V(x,t) €e V. x T, |f(z,t)] < p(t)" (domination at the vicinty of every point).
You can also dominate on all segments of X if X C R.

+o0
Example : g(z) = / e/ x + t2dt

0

o8
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Differentiating a parametric integral

Let X, T intervals of Rand f: X xT — K. If :

e VtcT, x+— f(x,t)isof class C' on X
o Vr € X, t+— f(x,t) is integrable on T'

0
eVzeX, tr— —f(a:, t) is piecewise continuous on T

ox
e For every segment S of X, there exists ¢ : T' — R integrable on 7' so that :
0
V(z,t) € S x T, a—f(a;,t) < o(t)
5

| 4

Multiple differentiation of a parametric integral

Let X, T intervals of R, p e N* and f: X xT — K. If :
o VtecT, x+— f(x,t)isof class CP on X

o f .
e Vke[0,p—1], VzxeX, t+— W(w,t} is integrable on T'
z
o
eVre X, tr— W(w, t) is piecewise continuous on T
T

e For every segment S of X, there exists ¢ : T' — R integrable on T' so that :

v SxT s <
(113,15) € X 1, @(3371:) = So(t)
X — K
Theng:<¢ . /f(w #)dt is of class CP on X,
T
: k ok f
with Vk € [1,p], Vze X, ¢®¥(z)= /W(:c,t)dt
T
RY  — R
+oo
Example : T": N / o1ty € C>(R%)
0
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D

F

dt

In(t)
$2

+oo
Convergence and value of / T
0

Let f(x) = /ln(ln(l-l-t))dt.
0

Prove that f is defined on ]0, +00[ and give an equivalent of f(x) when x — 0

1
Let I = /mxdx
0

1) Prove the convergence of I.
1

2
[z In(x)* ) ) . o
2) Compute I}, = T dz using the variable change u = 2" .
/ !
+oo (_l)nfl
3) Prove that I = Z o
n=1

1
Let f € C°([0,1],R%). Consider G(z) = /exp(m In(f(t)))de,
0

1 1/x

1
and let F(x) = /f(t)xdt . Prove that F(x) ~ exp /ln(f(t))dt
0 0

T N e T W

iIkY Reduction

RN First tools

We consider E a nontrivial K-vector space (not necessarily finite-dimensional).
Reminder : a subsapce F' is stable by u € L(FE) when u(F) C F

If u,v € L(E) commute, then Ker(v) and Im(v) are stable by .

Let F a subspace of E stable by u € L(E). The induced endomorphism ur € L(F) is defined
by Vz € F, wup(z) =u(x) € F.

60



15. REDUCTION - 4H eloi.tanguy@polytechnique.edu

Cancelling polynomials

P € K[X] cancels u € L(E) when P(u) = 0p(g).
The set CI, = {P € K[X]|P(u) = 0} is the cancelling ideal of .

If u has a nonzero cancelling polynomial, then there exists a unique unitary polynomial 7, so
that I, = m,K[X]. In this case, all cancelling polynomials of u are multiples of m,. m, is the
minimal polynomial of w.

| 4

Example : If F is finite-dimensional, then all endomorphisms have a nonzero cancelling polynomial.

If u € L(E) has a cancelling polynomial P and a stable subspace F, then P(upr) =0

Reminder : u € L(FE) is nilpotent if there exists k € N so that u* = 0. The smallest k so that u* =0

is u’s nilpotence index.

Nilpotence

Let u € L(E) nilpotent of index r and = ¢ Ker(u"~!). Then (z,u(z), ...,u"~!(z)) is independent.

Suppose E finite-dimensional of dimension n. For all nilpotent endomorphisms u, there exists
a basis of F in which the matrix of « is strictly upper triangular.
Every nilpotent matrix of M, (K) is similar to a strictly upper triangular matrix.

Kernel Lemma

Let (P, ..., P.) € K[X]" a family of polynomials.
We suppose that they are mutually coprime : Vi # j, P, AP; = 1.

-
We define P their product : H Py
k=1

Then |Vu € L(E), KerP(u)= @ Ker Py (u)
k=1

IbWA Eigenvalues and eigenvectors

g _D:inition

A € K is an eigenvalue of u € L(F) is there exists © € E'\ {0} so that u(z) = Az. In that case,
x is an eigenvector associated to the eigenvalue A.

The set of the eigenvalues of u is called the spectrum of u and written sp(u).

Let A € sp(u). The eigenspace associated to A is the vector space of the associated eigenvectors :
E)(u) = Ker(u — \Id)

The same definitions goes for matrices when F is finite-dimensional.

If u and v commute then the eigenspaces of one are stable by the other.

Properties of eigenspaces

e Let A\j, ..., \p, mutually distinct eigenvalues of u. Then the Ej, (u) are in direct sum.
e Let F' C E stable by u. Then E)\(up) = Ex(u)NF

P
e If E is finite-dimensional and Ay, ..., A, distinct in sp(u), then Zdim E),(u) <dimE
i=1
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Link with cancelling polynomials

o If z € E)(u) and P € K[X] then P(u)[z] = P(\)x
o If P cancels u then all eigenvalues of u are roots of P : sp(u) C Z(P)

e If u has a minimal polynomial 7, then Z(m,) = sp(u)

Characteristic polynomial

We suppose F finite-dimensional.

g _Dcinition

Let A € M, (K). The characteristic polynomial of A is x4(X) = det(XI, — A)
We have x4 = X" — Tr(A) X" 1+ ...+ (—=1)"det A
VAeK, Xesp(4) < x(A)=0

Let u € L(E). Since two similar matrices have the same characteristic polynomial, we can define
Xu = XA Where A is the matrix of u in any basis.

Useful properties

o If F'is stable by u then x,, divides xu.
o If F'is stable by w and x4, is totally separated then yx,,, is also totally separated.

n

o [fdimF = n and Xu = H(X = >\z) then Tr(u) = Z)\l and detu = H/\z
i=1 i=1 =1

\.

g _Dcivition

The order of multiplicity m(\) of A € sp(u) is its order of multiplicity as a root of y,.
We have VA € sp(u), 1<dimFE)(u) <m(\) <dimFE

Cayley-Hamilton Theorem

Vu € L(E), xu(u)=0and VA € M,(K), xa(4)=0. r

As a consequence, deg(m,) < n

Diagonalisation

FE is still supposed finite-dimensional of dimension n.

g _Dcivition

u € L(E) is said to be diagonalisable if there exists a basis of £ in which its matrix is diagonal.

u € L(E) is diagonalisable < there exists a basis of E of eigenvectors of .

A € M, (K) is diagonalisable when 3P € GL,(K), 3D € D,(K): A= PDP!
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Vectorial criteria of diagonalisability
4

If sp(u) = (A1, ..., Ap) where the \; are distinct, then the following properties are equivalent :

Using the characteristic polynomial
| 4

u € L(E) is diagonalisable < x,, is totally separated and VA € sp(u), dim E)(u) = m(X)

If x4 is totally separated with simple roots, then u is diagonalisable.

Using cancelling polynomials
4

There is equivalence between :

1) w is diagonalisable.
2) w has a cancelling polynomial that is totatlly separated and has simple roots.

3) m, is totally separated and has simple roots.

.

Let u € L(E) diagonalisable and F' C E stable by u. Then ur is diagonalisable.

IR Trigonalisation

F is still finite dimensional of dimension n.

g _Dcinition

u € L(F) is trigonalisable if there exists a basis of F in which the matrix of w is upper

triangular.

A € M, (K) is trigonalisable when it is similar to an upper trangular matrix.

Using the characteristic polynomial

u € L(E) is trigonalisable < Y, is totally separated on K.

When K = C, all endomorphisms are trigonalisable.

Consequence : CAYLEY-HAMILTON in C.

If u is trigonalisable then if sp(u) = (u1, ..., in), Z wi, det(u H

Characterisation of nilpotent endomorphisms

The following properties are equivalent :

1

) w is nilpotent

2) There exists a basis in which the matrix of u is strictly upper triangular
)
)

3
4) w is trigonalisable with sp(u) = {0}
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Using cancelling polynomials
4

The following properties are equivalent :

1) w is trigonalisable
2) w has a cancelling polynomial that is totally separated

3) my, is totally separated
Let u € L(F) diagonalisable and F' C FE stable by u. Then up is diagonalisable.

Fine trigonalisation
|

If u has a cancelling polynomial that is totally separated, then there exists a basis of E in which
AMln, + N1 (0)

the matrix of u is of the form : where the N; are nilpotent.
(0) Apln, + Np

oo

Simultaneous reduction. Let F a finite-dimensional vector space of dimension n. We
consider u,v € L(F) that commute (vou = uov)

1) We suppose that u and v are diagonalisable. Prove that they are simultaneously
diagonalisable : that there exists a basis of F in which the matrices of v and v are
diagonal.

2) We suppose that u and v are trigonalisable. Prove that they are simultaneously
trigonalisable : that there exists a basis of E in which the matrices of u and v are upper
triangular.

Let A € M,(K) and ¢ : { Ve AM
1) Prove that ¢ is diagonalisable < A is diagonalisable.

2) We suppose A diagonalisable. Reduce ¢ : determine sp(¢) and a basis of M, (K) in
which the matrix of ¢ is diagonal.

Let u,v two commuting endomorphisms of a finite-dimensional vector space with v nil-
potent. Prove that det(u + v) = det(u).

Exoa] Exor J  Exo

iIli] Complements on Euclidians

Let E an euclidian space with an inner product (-|-). We note E* = L(E,R).

Riesz’s representation lemma

Let f € E*. Then 3Jla€ E, VexeE, f(z)= (alx) r
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IRR  Symmetries : the spectral theorem

g _D:inition

u € L(E) is a symmetry when V(z,y) € E2, (z|u(y)) = (u(z)|y)

The subspace of L(E) of the symmetries of E is written S(E).

Characterisation of symmetries

Let B an orthonormal basis of E and u € L(E). u € S(F) < matp(u) is a symmetric matrix.

n(n+1)

The subspace S, (R) of M, (R) composed of the symmetric matrices is of dimension —

Let u € S(E). If F is stable by u then F'* is also stable by w.

Orthogonal eigenspaces

The eigenspaces of a symmetric endomorphism are orthogonal.

Stable subspaces for endomorphisms of R-vector spaces

We suppose E to be a nontrivial finite-dimensional R-vector space.

Let u € L(E). There exists a subspace F of E that is stable by v with dim F' € {1, 2}

— ¥ U V B |

This can be rephrased : "all endomorphisms of an R-vector space have a stable line or a stable plane"

Lemma : spectral theorem in dimension 2

If F is an eucildian of dimension 2, then all symmetries of E are diagonalisable.

Spectral Theorem

N \

Let u a symmetric endomorphism of an euclidian space E. Then :
e [ is the orthogonal direct sum of the eigenspaces of u.
e [ has an orthonormal basis of eigenvectors of w.
e u is diagonalisable in an orthonormal basis.

In terms of matrices : let S € S, (R). Then : 30 € O,(R), 3D € D,(R), S =0DO"

. J

We say that "real symmetries are orthogonally diagonalisable".

IGWA  Applications of the spectral theorem

g _Dcinition

The spectral radius of u € S(E) is p(u) = )\maz¢)|>\|. We have |||u|| = p(u)
esp(u
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Positive and positive-definite symmetric matrices

Let S € S, (R). S is positive when its eigenvalues are positive. We write S > 0 or S € S (R).

S is positive-definite when its eigenvalues are stricly positive. We write S > 0 or S € S;F+(R).
S>0eVXeR?, XTSX >0 and S>0&VXeR*\{0}), XTSX >0

The same goes for a symmetric endomorphism. Example : let A € M,(R). ATA, AAT > 0.

Square root of a positive symmetry

Let u € ST(E). v € ST(E), u=1v?
For u € S*(E) and A € S;F(R), this allows to define /u and v/A.

Polar Decomposition

Let M € GLn(R). 31(0, S) € On(R) x S (R), M = OS.

If M is not inversible, there is existence but not unicity.

I R D

Y Reduction of isometries

Reminder : simplification of u € O(R?)

cosf —sind )

If det w = 1 then it is called a rotation and its matrix is in the form Ry = .
sinf  cosf

in a certain orthonormal basis.

cosf sind >

If det u = —1 then it is called a symmetry and its matrix is in the form Sy = .
sinf —cosf

in a certain orthonormal basis.

e The isometries with no eigenvalues of an euclidian plane are the rotations of angle § # 0[r].
e Let u € O(FE) and F stable by u. Then F is stable by u.

Reduction of isometries

Al

Let u € O(E). There exists an orthonormal basis of E in which the matrix of u is of the form :
Ip (0)
—
Ry, with Vi € [1,7], 6; € ] —m,0[U]0,7]
(0) Ry,

66



16. COMPLEMENTS ON EUCLIDIANS - 4H eloi.tanguy@polytechnique.edu

Vectorial functions

We consider E a finite-dimensional normed K-vector space (K = R or C), I an interval of R, f : I — F
and a € .

t —
f is differentiable at a if its slope M has a limit in £ when t — a.

Like for functions in R, we define functions of class D¥, of class C* and we have the usual properties
on linear combinations and sums.

Let B a bilinear map from £ x F to G, f:1 — FE, g: I — G differentiable at a.
Then t — B(f(t), g(t)) is differentiable at a with B(f,g)'(a) = B(f'(a),g(a)) + B(f(a),d (a)).

Example Let f : I — GL,(K) of class C*. Then t — f(¢)~! is of class C*.

Mean inequality - general expression

Let I =a,b], f: I — E, ¢: I — Rso that :
e f and ¢ are continuous on [a, b]
e f and ¢ are differentiable on |a, b]
o Vi €la, b, [If(B)I <¢'(2)

Then [|f(b) — f(a)l| < ¢(b) — ¢(a)

Integral of a vectorial function on a segment

We suppose F euclidian.
b

Let f : [a,b] — E piecewise continuous. There are two definitions of / f:

a

EFE — R

e Consider @ : e B*.

b
v /(v|f(t))dt

b
By RiESz’s lemma, 3! € E, ¢ = (I|-). We define /f(t)dt =1

b b
This gives the formula Vv € E, /(v|f) =|v /f
a

a

o Write Vt € [a,b], f(t)= Zn:fi(t)ei so Vi€ [l,n], fi€ PWC(la,b],R).
i=1

b b
We define / f(®)dt = Z / fi(t)dt | e;. This does not depend on the chosen basis (e;).
a =1 \&

All usual results on integrals remain true thanks to the second definition which links vectorial inte-
gration and real integration.
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B °

Vectorial Product
Let E an euclidian of dimension n. We consider B a direct orthonormal basis of F.

We note [, ...,:] = detg(:, ..., ).

1) Let (21,...,7n—1) € E""L. Prove that 3w € E, Vy € E, [x1,...,Tn_1,Y] = (w]y).
We note 21 A ... ANxp_1 = w

2) Give the coordinates of w in the basis B.

3) Prove that w = 0 < (21, ...,2,—1) is dependent.

4) We suppose that (mi)?:_ll to be orthonormal. We complete it with z,, into a direct
orthonormal basis of E. Prove that 1 A ... Axp_1 = x,.

1
Legendre’s polynomials : We give R[X] the inner product (P|Q) = / PQ.

1
1) Prove that there exists (P,)nen an orthonormal basis of R[X]

with Vn € N,  deg P, = n.

(@ -1)Py1)dt=0

&~

1
2) Let n € N. Prove that V@ € R,,_;[X], /Q(t)
=i

3) Prove that Vt € R, (t2 — 1)P”(t) + 2tP.(t) — n(n + 1)P,(t) = 0

We consider E and euclidian of dimension n and B an orthonormal basis of E.
Let u € L(E) that conserves orthogonality : (z|y) = 0= (u(x)|u(y)) = 0.
Let A = matp(u)

1) Prove that VX € R?, VY €R?, XTY =0= XTATAY =0

2) Prove that VX ¢ R?, 3INc R, ATAX =)\X

3) Prove that IA € R, 30 € O,(R), A= X0

1) Let A€ ST (R), B e S,(R).

Prove that 3P € GL,(R), 3D € D,(R), A=PT'P, B=PTDP.

2) Let (A, B) € S;f7(R)?, and «, 8 > 0 so that a + 3 = 1.

Prove that det(aA + 8B) > (det A)* x (det B)?

3) Let (A, B) € S;F+(R)2. Prove that det(A + B)/" > (det A)Y/™ + (det B)'/"
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Differential Equations

IWN Scalar linear DEs of the n-th order with constant coefficients

Let n €N, (ag,...,an_1) € C*. We consider the equation y™ + a, 1y + ... + a1y 4+ agy = 0.

n—1 r
Its characteristic polynomial is C(X) = X" + Z ar X", we factorise it in C : C' = H(X — )%
k=0 i=1

T
Then all solutions of the equations are of the form |y = Z PeMt | where each P, € Ca,—1[X]
i=1

IWA First order scalar DEs

Let I an interval of R and K =R or C.
Resolved and homogenous equations

We consider the equation (Ep) : 4/ + ay = 0 with a € CY(I). Let A an antiderivative of a.

The solutions form a vectorial line : they are all of the form |y = Ae=4® | with X € K

y+ay = 0
y(zo) = o

has a unique solution y € C(I)

For xg € I, 1y € K, the CAUCHY problem {

Example : 3/ = ty. A solution that has a zero at a point in I will be constant equal to 0.

Inhomogenous equations : variation of the constant

We consider the equation (E) : y' 4+ ay = b where (a,b) € C°(I).

Let yo a nonzero solution of the associated homogenous equation y' + ay = 0.

The general method is to look for a particular solution y, of the form y, = A(t)yo with A € C1(I)
All solutions of (E) are of the form y = ayo + y, with o € K

Y +ay
y(zo)

has a unique solution y € C1(I)

Yo

For xg € I, 1y € K, the CAUCHY problem {

Example 3 —ty = €'

Non-resolved equations

We consider the equation (E) : ay’ + by = ¢ with (a,b,c) € C°(I)3, where a can cancel itself.

The general method is to solve on intervals on which a never takes the value 0, then to proceed
by Analysis-Synthesis in order to find solutions on I.

There is no general result on existence or unicity of solutions of CAUCHY problems for equations
of this form.

Example : ty — ay =0 with a € R
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IWMEY From scalar n-th order to vectorial first order

Yy
Consider the equation y™ = a,_1y™ Y + ... + agy. We define X = : € CY(I,K").
y(n_l)
yl
We want to solve the equation X’ = : which can be put under the form

an—1y™ Y + ...+ agy
X' = AX with A € CO(I, M, (K))

First order vectorial DEs with constant coefficients

Let E a normed K—vector space of dimension n, a € L(E) and b € C°(I, E). Let A the matrix of a
and B(t) the matrix of b(¢) in a basis of E.

We consider the equations :

o (E):y =ay+b(t), yeCYI,E) in terms of matrices : X' = AX + B(t), X € CY(I,K").
e (Ey):y =ay, yeCYI,E)in terms of matrices : X' = AX, X € CY(I,K")

o (&):uw =aou, ue€CYI,L(E)) in terms of matrices : U' = AU, U € C'(I, M,(K))

+oo rk
Reminder : by normal convergence, we can define exp(f) = Z o for f € L(E)
k=0 "'
1o prk
and exp(M) = Z s for M € M, (K). By normal convergence of the differentiated series, if f or M
k=0

are functions of class C! then exp(f) and exp(M) are too.

T ,

LI — L(E) - : _
Let toe I. wup: { : exp((t — t0)a) of matrix form : ‘ Uo(t) = exp((t —t0)A)
. . W =aou . ;
is a solution of the CAUCHY problem matrix form : U’ = AU, U(to) = I,
u(to = IdE

Lastly, Vtel, wu(t)e GL(E)

/
All CAUCHY problems { yzét ﬁ.y

y have an unique solution ‘ y(t) = exp((t — to)a).yo
0

o)

In matrix terms : "X’ = AX and X (t9) = X" has for unique solution | X (¢) = exp((t — t9)A) Xy

The vector space of solutions of (Ey) is isomorphic to F, so it is of dimension n.

Practical resolution of X' = AX.

1) When A is diagonalisable

Let (Vi,...,V,) a basis of K" of eigenvectors of A, and (Ay, ..., A,) their associated eigenvalues.

I — K»

Lo MY for k € [1,n]

The solution space of (Ey) has for basis the functions Y : {
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NI

2 1
Example : X' = AX for A=| 1 2
1 1

2) When K =R and A is diagonalisable in C but not in R

In this case, the basis of ffunctions (Y;) will have paired conjugate complex terms Y,Y .

Since Span(Y,Y) = Span(Re(Y),Im(Y)), replacing each pair (Y,Y) by (Re(Y'),Im(Y")) yields a basis
of the solution space.

3) When A is not diagonalisable in C

In this case we trigonalise A : we write A = PTP~! with P € GL,(K) and T € T;} (K).

We define Y = P71X : the system becomes Y’/ = T'Y, which can be solved from bottom to top.
The final solutions are obtained with the equation X = PY

It isn’t necessary to compute P71,

There exists a solution y; of (E).

All solutions of (E) are of the form ‘yl + exp(ta).v ‘ with v € E.

In matrix form : ’Xl + exp(tA)A ‘ with A € K"

Y =ay+0b(t)

for yg € E have a unique solution.
y(to) = yo Y

All CAucHY problems {

\.

A particular solution can be sought under the form X; = exp(tA)A(t) or under a simple form (poly-
nomials, exponentials,...)

IN#Y  First order vectorial DEs

There is no general method for expressing solutions, however we have CAUCHY’s theorem.

Cauchy’s theorem

Let a € C°(I,L(E)), be C°(I,E), tyelandycE.

y = a(t).y + b(t)

has a unique solution.
y(to) = wo

The CAUCHY problem {

Matrix expression : let A € C°(I, Ma(K)), B € C%(I,K"), to€Iand Xo €K™

X' = A(t)X + B(t)

has a unique solution.
X (to) = Xo 4

The CAUCHY problem {

As a consequence, the map y — y(tp) is an isomorphism from Sy (solution space of ¢ = a(t).y) to
E, with the corresponding result for X —— X(tg).

Let X a solution of X' = A(t)X + B(t). If 3tp € I, X(to) =0thenVte I, X(t)=0
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Structure of the solution space of a first order vectorial DE
We consider the equation (E) : ¢y = a(t).y + b(t) of matrix analogue X’ = A(t)X + B(t).

We also consider (Ep) : ¢y = a(t).y of matrix analogue X’ = A(t)X, and Sy its solution space.

g _Dcinition

A fundamental system of (Ey) is a basis (y1, ..., yn) of So.

Let (y1,...,yn) € Sy and B a basis of E.

The wronskian matrix of the family (y;) in the basis B is W (t) = matg(y1(t), ..., yn(t)).
The wronskian of the family (y;) is w(t) = det(W(t))

There is equivalence between :

1) (y1,..-,Yn) is a fundamental system
2) dtel, w(t)#0
3) Vtel, w(t)#0

Method : to find a particular solution of (F) using (y;) a fundamental system, one may consider a
function of the form y = A1 (8)y1(t) + ... + A (£)yn(t).

This corresponds to solving Njy1 + ... + ALy, = b or W(t)A'(t) = B(t).
To do that, decompose b in the basis (y;), which is the same as computing W (t) "1 B(¢).

Scalar DEs of the n-th order

We consider ay, ..., a,_1,b continuous functions and the equations :
(E) g™ + a1 ()y" 4+ ...+ ao(t)y = b(t), (Eo):y™ +an_1(t)y" 1+ ... + ap(t)y = 0.

The previous paragraphs provide the following results :

e The solution space of Ejy is of dimension n. If (yi,...,y,) is a basis of it and y, a particular
solution of F, then all solutions of E are of the form A\y1 + ... + A\pyn + yp

e All CAUCHY problems with an intial condition at ¢ : Vi € [0,n—1], y®(tg) = a; has a unique
solution.

Scalar DEs of the second order

We consider the equation y” + a(t)y’ + b(t)y = c(t).

(It can be put under the form z” + p(t)x = f(t) using a change of function.)

Yy Y2
/ /

In this case the wronskian of two solutions y1,y2 of ¥ + a(t)y’ +b(t)y =0 is w = oy
1 Yo

It verifies the equation w’ + a(t)w = 0
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Methods for finding solutions of the homogenous equation

A possibility is to look for a simple solution (polynomial, t*, cos,exp...) :
Example : t2y" — 2ty +2y =0
+o0o
Another method is to look for a solution under the form y(¢) = Z i,
n=0
Example : 4ty” + 2y —y =0

If you have a solution, you can find another using the wronskian method : if you have y; and
want a yo, consider their wronskian w (that satisfies w’ 4+ a(t)w = 0, so you know its value).

. w Y2 ! y 2, . sint
Notice that | = | — | | Example : 2" + -2’ + 2 = 0 using z1 =
Yi Y1 t ¢

Using one solution, you can use the variation of the constant to find another.
Example : ¢/ —tanty’ +2y=0on I =] -7, 7]

| 4

Finding a particular solution of the complete equation

If (y1,y2) is a fundamental system, look for a particular solution y with the conditions :

— / / _
A,lyl i /\,2y2 = Y This yields a system on A}, \j : /\,ly} + )\,Qy,Q =0
Myt +Myya = 0 Wty = ¢

The determinant of the system is w(t) # 0, so this method will always provide a particular
solution.

Example : t2y" — 2ty +2y =t

R -

Cauchy’s theorem. Let F a finite-dimensional normed vector space, I an interval of
R and a € C°(I, L(E)).

¢
1) Let tg € I and (2,) € C°(I, E)N with Vt € I,  z,41(t) = /a(u).zn(u)du.
to

Prove that Z zn converges normally on all segements of 1.

t
2)Let h € C°(I,E) and to € I so that Vt € I, h(t) = /a(u).h(u)du. Prove that h =0
to

3)Lettoc I, yo€E, beC%,E). Prove that the CAUCHY problem :
{M=a®y+M®

has a unique solution in D'(I, E
y(to) = Yo 4 (I, E)
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The Sturm-Liouville method. Let (E1) : ¢y’ 4+ p1y = 0 and (Es) : y” + poy = 0 with
VtER, pi(t) < pa(?).

1) Let y a nontrivial solution of y” + py = 0. Prove that zeros of y are isolated :
that if y(z) =0 then In >0, Vie[z—n,z+n]\{z}, y(t) #0.

2) Let y1 a nontrivial solution of (E7) and y2 a solution of (E3).

Let ¢; < ta so that y1(t1) = y1(t2) = 0. Prove that 3t € [t1,t2], y2(t) = 0.

Hint : consider the wronskian of y; and ys.

3) We suppose p; = py and that (y1,y2) is independent.

Let t; < ta two consecutive zeros of y;. Prove that 3t €]t1,t2[, y2(t) =0

Gronwall’s lemma.

Let a € CO(I,Ry), be C°I,R;), yeCYI,E), to€land A the antiderivative of
a that vanishes at tg.

We suppose that V¢ > to, ||y (t)]| < a(®)lly()]| + b(2).
t

Dietvtel, F)= [0 +a(s)ly)])ds and 2 = ly(eo)].
to
Prove that Vt > to, ||y(t)| < z0 + F(¢)

!/
2) Dominate (F e‘A> in order to prove that :

t
W2 to, [y < Oyt + et [ bse s

to
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PART 11

Physics

Analyse Dimensionnelle

IMN Définitions

L’Analyse dimensionnelle est 1’étude des dimensions des grandeurs physiques (longueur, masse,...).
Elle permet de mieux comprendre les formules et surtout de vérifier si elles sont justes!

Dimensional Analysis is the study of the dimension of physical quantities (length, mass,...). It allows
a better understanding of formulas, and it is especially used to verify if they are correct!

Liste des dimensions du Systéme International (SI)

Dimension Symbole Unité Symbole
Masse M kilogramme kg
Temps T seconde s
Longueur L metre m
Température © kelvin K
Intensité électrique I ampere A
Quantité de matiere N mole mol
Intensité lumineuse J candela cd

Une quantité peut ne pas avoir de dimension (dite "homogene & rien" ou "scalaire") : par exemple %
ou d et L sont des longeurs n’est homogene a rien. De méme, des nombres, des pourcentages, des
probabilités ... ne sont homogenes a rien.

A quantity can have no dimension (it is said to be "homogenous to nothing" or "scalar') : for instance
% where d and L are lengths is homogenous to nothing. Similarly, numbers, percentages, probabilities

. are homogenous to nothing.

Critéres d’homogénéité d’une formule/equation : Criteria for the homogeneity of a formula/equation :

e Les deux cOtés d’une égalité ont méme dimension. Both sides of an equation have the same
dimension.

e Deux grandeurs additionnées ensemble ont méme dimension. Two quantities that are added
together must have the same dimension.

e Une expression dans une fonction (log, exp, sin, cos,...) ne doit pas avoir de dimension. Inside a
function (log, exp, sin, cos,...), an expression must have no dimension.

Attention & utiliser les mémes unités pour des valeurs de méme dimension! Be careful to use the same
units for homogenous quantities

Dans une intégrale ou une expression différentiée, les "d__ " comptent ! Par exemple, [dt| = T. In an
integral or a differentiated expression, the "d_" s count! For example, [dt] =T

Une formule non homogéne est TOUJOURS fausse. A non-homogenous formula is AL-
WAYS false.

"

Notation : [quantité] = symbole de dimension ou symbole d’unité
Exemple : Soit f une force. [f] = MLT2 ou [F] = kg.m.s~2.
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Unités classiques

I Exercices

Symbole Nom Description Equivalents Sl
Hz Hertz fréquence s! 51
rad radian angle 1 1
N Newton force kg.m.s~2 kg.m.s~?
Pa Pascal pression N.m™2 kg.m™1s™2
J Joule énergie N.m,C.V,W.s kg.m?.s~2
W Watt puissance Js~ 1 V.A kg.m?.s73
C Coulomb charge électrique A.s, F.V A.s
\Y Volt tension électrique | W/A, J/C kg.m?.s73. A7}
Q Ohm résistance  élec- | V/A kg.m?.s73. A2
trique
F Farad capacité d'un | As.V ! m~2.kgt.s* A?
condensateur
H Henry inductance V.s. A7t kg.m?.s72. A2
T Tesla intensité d'un | V.is.m™2 kg.s72.A71
champ magné-
| tique
—

mimsa

On rappelle 'expression de l'intensité de la force de gravitation :F = G 2

Donner la dimension et 'unité de G.

Sachant que pour une spire de rayon R parcourue par un courant I, le champ magnétique

I
s’écrit : B = %, donner la dimension et I'unité de uq

Sachant que gg est en F.m ™!, laquelle de ces formules parait possible ?

€0
a) —=c
Ho
b) eouoc® =1
c) eoplo = ¢

2

L’expression de la période T' d’oscillations d’un pendule de longeur [ tenant une masse
m ne dépend que de I, m et g, 'accélération de pesanteur.
Déterminer T' par analyse dimensionnelle.

La fréquence f de vibration d’une goutte peut s’écrire sous la forme f = kR*pP7r7, ot :
- k est une constante sans dimension

- R est le rayon de la goutte

- p sa masse volumique

- 7 est la tension superficielle (force par unité de longueur)

Déterminer «, 3, .

EELEE TE W WCEEN EED
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Constantes physiques

Vitesse de la lumieére e =2,99792458 . 10° m.s~!

Charge élémentaire e =1,60219.1071°C

Nombre d’Avogadro Ny = 6,02204 . 102 mol—!

Constante gravitationnelle G =6,672.107" N.m? kg2

Constante des gaz parfaits R =38,3144 J. K '.mol!

Constante de Faraday F =96484 C.mol™!

Constante de Boltzmann kp = 1,38066.1072* JK!
Jonstante de Planck h =6,62617.107% Js

Masse de ’électron me = 9,10953 . 107! ke

Masse du neutron m, = 1,.675. 10727 kg

Masse du proton m, = 1,673 . 10727 kg

Permittivité du vide sy = 8,85419 . 10712 F.m~!

Perméabilité du vide g =47 .1077 Hm™!

Masse du Soleil 1,9891 . 10%° kg

Masse de la Terre 5,9736 . 10°* kg

Masse de la Lune 7,34 . 1072 ke

Rayon du Soleil 696 000 km

Rayon de la Terre (équateur) 6 378,14 km

Rayon de la Lune (équateur) 3474,6 km

Distance Soleil-Terre (demi grand axe) 149597 870 km

Distance Terre-Lune (demi grand axe) 384400 km
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BN Reminders

Complements on Mechanics

Fundamental Principle of Dynamics (PFD)

d?z

For a resulting force 7 we have 7 =—=m

%
dt 7

for an object of constant mass m).

Théoreme du Moment cinétique (TMC)
Angular Momentum Theorem

Here O is the origin of the coordinate system.

— =
We define the "moment cinétique" (angular momentum) of an object as Lo = OM A mv.

We define the "moment" of a force ? as ./\_/1>o(?) — OM A ?

%
dL
d_to = Mo (%)

i

The TMC is

For a solid, we have Lo = J# where J is the "moment d’inertie’ (moment of inertia) of the
solid.

[ |
ﬁ Prove the pendulum equation with the TMC. ]:l

Lois de Coulomb
Coulomb’s law

For an interface with a static friction coefficient f; and a dynamic friction coefficient f;, we
have :

1) If there is no sliding : ||?|| < f5||ﬁ.
2) If there is sliding : | T|| = f4| N |-

With ? the tangential reaction force and ﬁ the normal (perpendicular) reaction force. In
practice we often consider f = fs = fy the friction coefficient (approximation).

\. J

At what angle a does a slope need to be for a box to slide down it ? (friction coefficient
x
i L

78



2. COMPLEMENTS ON MECHANICS - 4H eloi.tanguy@polytechnique.edu

Energetics

La puissance d'une force (The power of a force) ? is P(?) = ?7

—
Le travail élémentaire (The elemental work) 6W(?) = P(?)dt = ?.dOM , pour un déplace-
ment élémentaire (For an elemental movement) dOM.

Le travail selon un arc ( The work along an arc) (AB) is W(?)A_”g = / 6W(?) (intégrale

Me(AB)
curviligne dépendant du chemin suivi/ Curved integral that depends on the chosen path).

Théoreme de I’Energie cinétique
Kinetic Energy Theorem

We define "l’énergie cinétique" (kinetic energy) of an object of mass m and speed o by :

E.= §m112.

dE, —
T ;P(fi)

Loi de la puissance mécanique (The Mechanical Power law) :

Loi de I’énergie cinétique (The Kinetic Energy Law) : E.(tg) — E.(ta) = Z WA_>B(7;).
i

A skier of mass m travels a distance d and descends a height h on a straight line. He
glides without friction (frottement) and has a starting speed vy. Calculate his speed at
the end of the slope.

g _Dcinition

A force 7 is conservative if its "travail" (work) does not depend on the path it takes.

We can write Wa_,p = E,(A) — E,(B) where E, is a function of the position called "énergie
potentielle" (potential energy).

We thus have 6W(?) = —dE, so ?dO—J\f = 5W(?) = —dE,

—
Finally, ? is said conservative when ? = —gradF),. 7 is said to derive of F,.

Examples
e Poids (weight) P= —mgi}

mima
@

e Force gravitationnelle (grativational force) ? =-G—5
r
e Force de rappel élastique (elastic force) ? =—k(l — lo)ﬁspringﬁsystem

H H
e Force d’inertie d’entrainement (centrifugal force) fie = mw?HM
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Energie Mécanique
Mechanical Energy

We define E,,, = E, + E..
For a system subject only to conservative forces, we have the conservation of the Mechanical

dE,,
Energy : = 0.

—
In general, with a sum of the non conservative forces fyc, we have the Mechanical Energy
Theorem : AE,, = W(fnc)--

Energétique du solide indéformable en rotation
Energetics of a non-deformable rotating solid

1 . 1 . 1 .
The total kinetic energy is : E, = ZEC(MZ) = Z §miri292 =5 (Z mﬁ?) 6% = §J02.
i

The "puissance" (power) of a force : ? is P(?) = M(?)H

dE, —
i zi:P(fi)

The Kinetic Energy Theorem :

Equilibria

We consider that ? =F (a:)u_z) derives of the potential energy E,(x).

By conservation of the mechanical energy, E,, = E. + E, = cte.

But E. > 0 so .

dFE
To know the movement around z, we use ? = —d—p@ .
x
Positions d’équilibre
Equilibrium Positions
R v
To have an equilibrium at z., there needs to be ?(xeq) = 0.
dF, dF.
Because ? = _d_xp 77;, we have an equilibrium at z., < _a:p (€eq) =0
An equilibrium point is said stable if the object stays there even if its movement is slightly

perturbed.

An equilibrium point is said unstable if the object doesn’t stay there if its movement is slightly
perturbed.
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_. N o E,
F F A
Em — - quilibre instabl —
X f F F F
EC E équilibre stable
A
A '
E,
[ Y ——
a x1 T2

—a
Criteria for the type of stability
| 4

Suppose that x4 is an equilibrium point.

d’E, '
If Tz (2eq) > 0 then x4 is stable.
x

d2E

If —2
dz?

(eq) < 0 then z., is unstable.

Let € = 2 — z¢y. By the PFD :

) dF d’E
mé = F(Zeq + €) = F(Teq) + e (Teq) =0 — 5?;’ (Zeq)

If Ly (Zeg) > 0, th defi L,
[ ) —_— =] -
o2 ) , then we define wg .

harmonic oscillations around x4, a stable positon.

(zeq) and we have & + wie = 0 :

We have e(t) = A cos(wot + ¢) with A, ¢ two constants.

42E, 1d2E,

o If —— -
dz? m da?
exponential divergence, an unstable position.

Teg) < 0, then we define p = Teq) and we have & — p?c = 0 :
q q

We have e(t) = AeP! + Be P! with A, B two constants.

\. J

o8  Exercises

We consider a pendulum of mass m and length L that can turn at 360 degrees. Study
its equilibrium angles.

At what condition on the starting speed vg of a cyclist can he go through a loop of radius
r?

A curve turns around an axis at a constant rotation speed w. We place a ring on the curve
so it glides along it. What equation must the curve have in order to have an equilibrium
point at every point on the curve?
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Movement in a central force field

g _D:inition

A "force centrale" (central force) ? is a force of the form 7 = f(r)u; (spherical coordinates).

An object subject to a central force always moves along the same place. We therefore use polar
coordinates to describe its movement.

~
dL
— —
By the "Théoréme du Moment cinétique", Fra ./\/1(7) Yet M(?) =OM A 7 = rug A
foya =10
- e

So L is constant, so OM, which is always perpendicular to f, is always in the same plane.

J

We now use polar coordinates.

Constante des aires

The area constant

The quantity C' = 26 is constant for an object subject to only ?

% .
Indeed, || L'|| is constant and is equals to r x m/||vg| = ms26.

g _Dcinition

K
A "force Newtonienne' (Newtonian force) is a central force of the form ? = ——21772.
T
. . K
It derives from the potential energy Ep(r) = ——
r

We now suppose 7 Newtonian.

Lois de Képler
Kepler’s laws

For the gravitation force ? = —G—5—u; (M is the mass of the attracting body), we have :
r

1) Loi des orbites/Orbits Law All objects have an elliptical trajectory with O as one of the
foyers.

2) Loi des aires/Area Law The area covered by the vector O—]\f during two time intervals of
equal lengths is equal.

3) Loi des périodes/Period Law For a trajectory of period 7" and of semi-major axis a (for a
2

circle, that’s the radius), we have — = cte.
a

Proof for a circular trajectory :

27r
. v? mM GM T2 v 4%
On wu,., with the PFD —m— = -G sov=1{/—— Then — = = is a constant.
r r r3 r3 GM
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Energie potentielle effective
Effective potential energy

K 1
We have By, = By, + E, = ——+ imv
r

Yet ¥ =, + rup, so v = 72 + 1262,

K 1 . K 1 . 1
Finally E,, = —— + -m(7? + r20%) = —— + -mr?20% + —ms?
ro 2 r o 2 2
We define the Energie potentielle effective (Effective potential  energy)
K 1 . 1 C? .
Birp = =—F imr292 = Ep(r) + Mg (with C = r20) the area constant.
r r

. J

We always have E,.rr < Ep,, and we can use Ep.r¢ to describe the movement, similarly to a usual
potential energy.

Em1l
Epeff(r)
rolrl R r2
~Em2~~:
Em3

o For E,,, to satisfy E,crp(r) < Epma, necessarily you need r € [ry,rp]. The orbit is an ellipsis :
the radius oscillates between r; and 7.

o For E,,3, to satisfy Epcrr(r) < Ein3, necessarily you need r» = R. The orbit is a circle of radius
R.

o For E,1, all r > rg allow Epesr(r) < Epi. The object can leave to infinity.

Circular Trajectories
Now we suppose r = cte.

Particular Values for a circular orbit '

GM _ v? mM
We have |v = {/ —— | (because by the PFD on u,, —-m— = -G )
r

r r2
mM 1 5 1 mM 1 mM
We have B, = -G——, E.= §mv =5 0| E, = =
7 7 7

GMm
2a

Remark : We admit that for an ellipsis of semi-major axis a, E,, = —
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Premiére vitesse cosmique
First cosmic speed

The first cosmic speed v; is the speed of a satellite at a circular orbit that is at ground level
(r = Rp).

GMr
T

We have v; =

~ 8km/s

Seconde vitesse cosmique
Second cosmic speed

The second cosmic speed, or liberation speed, is the speed required to leave the Earth’s pull
and leave to space.

We consider that such a satellite leaves towards infinity with a final speed close to zero.
The conservation of the mechanical energy gives : E,,(start) = E,, (inifnity), therefore :

1 mMp 1 mMrp
émv%—G Ry =§mvc2,o—G P

We consider vs, = 0 (since vg is the minimal liberation speed), and ro, = +00 (since the object
approaches infinity).

Finally E,, =0 = §m02 -G 7 SO Vg =

= 2v1 ~ 11km/s
T Ry

For a black hole of mass M, there exists a distance R from its center of mass past which
not even light can escape. Compute R.

Ex 12

A satellite describes an ellipsis such that at its closest point to Earth (perigee) it is
d, = 200km away from the Earth and so that at its farthest point (apogee), it is d, =
5.9 x 103km away from the Earth.

Draw its trajectory, compute the mechnical energy E,, of the satellite and its revolution
period T

We give the speed of the satellite at its apogee : v, = 3.5 x 10%ms~!. Determine its speed
at the perigee. Explain why it is faster at its perigee than at its apogee.

Homework Correction

2.6.1 Correction of Ex 7

If light can’t escape at radius R it means that the escape velocity at R is the speed of light ¢. Therefore

\/ 2GM 9GM
we have ¢ = so|R = .
R c2

2.6.2 Correction of Ex 8

d,+d
The semi-major axis of the ellipsis is a = — % therefore the mechanical energy of the satellite is
1 _mM
En=—=G
2 a
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To calculate the period KEPLER law : o — 7 g0 |7 — \fa3 47
o calculate the period we use KEPLER’s law : —— = ——— 50 |T = {/a .
P a* ~ GMy GMy
. dava .
By conservation of the angular momentum (central force), we have dqv, = dpv, so |v, = | It is
P

faster because we have C' = 26 therefore the closer the satellite the faster its rotation speed 6.

K} More Mechanics

CWR  Changing Referentials

In this lesson R will be a galilean referential of origin O and R’ will be the moving referential of origin
0.
For a translation

_ =
M/R = @ pM/R' T TO//R-

For a constant rotation around a fixed axis

_>
We note {2/ z the angular velocity vector (vecteur instantané de rotation) between R’ and
R, and H the projection of M on the rotation axis.

ﬁ H
7M/’R = 7m/'R’ —+ QR’/R NHM R
7M/R = E)M/R’ — Q%,/RHM-I- QQ’R’/'R N 7M/72’

N

\.

In all cases, U M/R = o MR+ vy, where v is the drive speed (vitesse d’entrainement) of the

referential. v is the speed of the fixed point on the moving referential that coincides with M at the
analysed instant. The acceleration of that point is called the driving acceleration g

For acceleration we also have the CORIOLIS acceleration a;, depending on the type of movement of R’.
In every case, 7M/R = 7M/R/ + c7d> + a_z.

. -
e For a translation : a; = 70’/R7 and @, = 0

— =
e For a rotation : ag = —Q%,/RHM and @, = 2Qr R A WM/R/

Fundamental Principle of Dynamics in R’
|

We have the PFD in R : mﬁM/R = ?, SO mﬁM/R/ + may + ma, = ?

So mﬁM/R/ = ? — may — ma,

We define the drive force (or centrifugal force for a rotation) ?d = —mag and the CORIOLIS

force ?cm« = —mEg.

The PFD in R’ thus writes mE)M/R/ oy + 7d + 7CW.
If R" moves in a translation then ?d = —mdo /R, and 70(),« -0

e —
If R’ moves in a rotation then 706” = mQ%,/RHM, and ?cor = —ZmQR//R A 7M/R'

Describe the movement of a ball sliding without friction with a starting speed 76 on a
roundabout rotating at w (constant). Do the description in both referentials.
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Angular Momentum Theorem in R’

_>
AL 3/

i ) S M FT) + T T )
R 7

A point A is moving along the horizontal so that = 4(t) = X cos(wt). We have attached
a pendulum of length L and mass m to A. Calculate the movement equation of the

(Tp]
L]

X
M} pendulum.

3.2.1 Driving force

The definition of ? is changed on the Earth to account for the rotation of the Earth around its axis :
7 = Agrav — agq. This makes a very little difference however.

3.2.2 Cyclones

If a gas particle wants to reach a depression, it is deviated by the CORIOLIS force.

Static of Fluids

Equation of the static of fluids

gradP = 7,

Where 71, is the resultant of the volumic forces (its dimension is [Force]/[Volume])

Reminder : the elementary force (5? applied by the pressure P on an elementary surface 4S5 of normal
7 is 0F = —PoST.

- L]
H My watch can sustain P = 10 bar. At what depth can I dive ? ]:l

The height of the mercury in a mercury thermometer in ordinary conditions is Py is
h = 76¢cm. What is the volumic mass of mercury ?

Archimides’s force

For an immobile ol:iect of volume V submerged in a fluid of volumic mass p, we have by the
PFD ﬁ +pVd = 0, where ﬁ is ARCHIMIDES’s force that "pushes" the object up.

Therefore, ﬁ = —pV?

- L]
a What proportion of the volume of an iceberg is submerged under water ? ]:l
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Ideal Gases and Statistic Physics

BN The Kinetic Pressure Model

The average of a quantity X is written (X) or X.

Expression the pressure in function of the average quadratic speed

We define the pressure P of a fluid on a surface the physical quantity that satisfies (ﬁ = —Pﬁ .

n*m*u?
For a gaz, we have | P = 3 , where m* is the mass of a gas molecule, n* = % (the
molecular density) and u is the average quadratic speed u = /(v?).

g _Dcivition

We can give a kinetic defintion of the temperature : | (E.) = 3kgT

This gives the Ideal Gases relation : | PV = nRT

An Ideal Gas is a model of the behaviour of any gas when P — 0. This is when the gas
particules don’t interact with each other.

The Van der Waals equation

@
We consider that the internal energy of a gas molecule is E = —5 — %.
r r
an’?
The Ideal Gas equation is perfected by VAN DER WAALS with | (P + W)(V —nb) = nRT|.
b is the molar volume of the molecules and a a constant that depends on the gas.

The isothermic atmosphere model
| 4

.. . . . mpgz
The application of the static of fluids gives | P(z) = Pyexp | — EoT
B

The Boltzmann factor
| 4

Let € be an attainable energy state for a particle. The number of particules at the state ¢ is :
Niot 3
N, = exp | —
©T 7 P\ kT

€
exp <_k:B_T> is called the BOLTZMANN factor. Z is a constant that allows Z N.=N.

€

1 €
This has a probabilistic writing : | p. = EeXp <_I<JB_T>

For convenience we define 8 = kB;T'
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%
We consider a particle of magnetic moment M in a magnetic field ﬁ We give the

potential energy attached to its interaction with the field : £, = —M.
ﬁ
It has two possible states : "spin 3 v M and ﬁ are positively colinear, and "spin —3 :

5
they are anticolinear.

Calculate the populations of the two spins.

Thermal Capacity at constant volume

We define |Cy = —

There are two different models we can use in physics. There is the classic model that says that the
energy is a continuous function (it can have an infinite amount of values), and there is the quantum

model that says that energy levels are "quantified" : they are discrete, finite.

The two following theorems belong to the classic approach.

The Maxwell-Boltzmann Law

For an ideal gas composed of N particles, the probability to mesure a particule with a speed
Umes Within the intervals :

— — S
Umes-Uz € [Uxa Vg + d’Uz], Umes-Uy € [Uya vy + de], Umes-Uz € [U27 v, + dvz]

Is |dpu, vy,v. = A dvydv,

A is a normalisation constant : A = / e dvydv,

Equipartition Theorem

If in the classic limit the energy can be written under the form E = aX? 4 b where X is either
a variable of position x; or a variable of impulsion p;, and where a and b do not depend on X,

1
The Equipartition Theorem gives | (a X?) = §kBT

For example for one particle of gas, E = 2;0733 + 2p—y + 2]9—2 + E,(x,y,2)
m

2
By the Equipartion Theorem, <P;21;yz> */ﬂ?BT so (E.) = kaT
m

Capacity of an ldeal Gas

Pl Pl P Py
For a monoatomic ideal gas, I = o N
2m  2m  2m 2
E, = 0 because the gas is ideal. We therefore have by the Equipartition Theorem :
3NkgT 3 ) 3
(E) = 5 = §nRT Finally | C, = EnR

For a Diatomic ideal gas, there are two extra degrees of liberty for each particle (the rotation of

that particle comparing to its partner), so we have | C,, = inR
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Models and Definitions

Intensive/Extensive parameters

Let 3 = 31 U Y9 be a system.

A quantity X is said to be intensive when X (X) = X (X;) = X (X2).
For example : P, T, p are intensive.

A quantity X is said to be extensive when X (X) = X (21) + X (3s).
For example V,m, H, S, U, C, are extensive.

- Thermodynamics

Notation : Let X be an extensive quantity. X,, is the molar associated quantity and x is the massic
associated quantity.

g _Dcinition

A stationnary state is a state where the parameters no longer change.

An equilibrium state is a state where the parameters do not change and were there are no
exchanges between the system and its exterior.

You have local thermic equilibrium when the temperature and the pressure are defined at
every point (not necessarily uniform).

\. J

Ideal gases

At a microscopic scale : the molecules’ size and interactions are neglected.
At a macroscopic scale : at a thermodynamic equilibrium, PV = nRT.

JOULE’s law : for an ideal gas, U = U(T), H = H(T).
Partial pressures : P = Z P

Internal energy and enthalpy

The internal energy U is so that Fipy = U + Enacro
We define the enthalpy H by : H =U + PV

oUu
Heat capacity at constant volume C, = —
or V=cte

o0H
Heat capacity at constant pressure C), = —)
P=cte

Heat capacity of an ideal condensed phase

For a condensed phase U = U(T) = H = H(T). We have C, =C, = C
And |dU = CdT, dH = CdT |
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Joule’s relations and Mayer’s relations for ideal gases

| 4

By JOULE’s law, U = U(T) and H = H(T) for an ideal gas so ‘dU = (C,dT and dH = C’pdT‘

For an ideal gas we define v = —.

We have MAYER’s relations : | Cy , = ] and Cpp = ——
Y Y

Work of the pressure forces

|

We have W = —P.;dV, so | W = —/Pemth

Transformation types

|

e An isochoric transformation has V = cte
e An isobaric transformation has P = cte
e A monobaric transformation has P.,; = cte

An isothermic transformation has T = cte

A monothermic transformation has T.,; = cte

An adiabatic transformation has no thermal interactions with the exterior Qez: = 0

A reversible transformation can be done the other way

Thermodynamic Principles

First principle of Thermodynamics

|

e [ is extensive.

e For a transofrmation of a closed system,

AU + AElmacro =W+ Q‘

W is the work and @ the heat (homogenous to energy)
U is a state function : AU does not depend on the transformation.
If the system is at macroscopic rest, AFmnacro = 0

For a monobaric transformation, AH =W, +Q (W, = W — Wpressure the useful work)

Laplace’s law

For a mechanically reversible adiabatic transformation of ideal gases :
PV7Y =cte, TV~ = cte and TP~ = cte
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Second principle of Thermodynamics

| 4

There exists an extensive quantity S called "entropy" so that for a transformation of a closed

system,
|AS =5.+5.|

Se is the exchanged entropy satisfying S, = Z % (for heat exchanges @); with thermostats

i K3

at temperatures T5)

S. is the created entropy satisfying S. > 0 in general, with S, = 0 when the transformation
is reversible.

S is a state function : AS does not depend on the transformation.

Thermodynamic identities

1):|dU =TdS — PdV| 2):|dH = TdS + VdP]

Aisyaibieaiifon = facl Ag— B (VR
pp 1cation : 10r a per eC gas, = ,7 — 1 n PI‘/I’Y

T
For an ideal compressed phase, | AS = C'ln (%)
I

8 Compute the entropy for an isothermic and reversible dilatation of an ideal gaz from a
LT.I< volume % to a volume V.

- We have two incompressible bodies of masses m1 and my initially at rest at temperatures
(@8 77 and T5. They have massic thermic capacities ¢; and cs. They exchange heat by
Lil< conduction until they are at a common temperature Ty. Determine 7'y and the created

entropy. Discuss the case m; = mo and ¢; = ca.

CLAPEYRON diagrams and state transformations

P.ﬂ

&
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4 ~
~
+ ~
‘ .
P .
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’
‘ "\
l’ :
.
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Diphased systems

| 4

We have for a liquid/gas diphased system and for all extensive quantities A : A = x, A4, + 21 4;
with x, the fraction of gas and z; the fraction of liquid.

On C , L v — U] MV
LAPEYRON = = —
t S APl | v = —a | ML
We define the state change enthalpy between state 1 and state 2 : Ly, = H(2) — H(1).
. Ai_0H
The entropy of state change from 1 to 2 is A1_,2S5 = T

Industrial Principles

First and Second Principles for a flowing fluid (industrial principles)

For a fluid flowing at a constant massic rate R, we have :

[ec+ep,eact+h]10=wu+Q7 Rm[€c+ep,ext+h][O:Pu+Pth and‘SO_SIZSe"i_SC

g (JOULE-KELVIN decompression) A perfect gas goes through a pipe and through a porous
5 obstacle so that its pressure goes from P; to Pp (P; > Pp and its temperature from 77
M} to Tp. Show that h; = hp and find the massic created entropy s..

(32)

(9l A perfect gas goes through a nozzle (tuyere) so that its temperature goes from 77 to Tp,
Lil< its pressure from P; to Pp and its speed from c; to cp. Find the variation in speed.

Thermic Machines

We consider a fluid going in a cycle. It receives a work W (if W > 0 then the machine receives external
energy to function (example : fridge), if W < 0 then it creates work (example : motor). It is in contact
with two thermostats T, (warm) and 7, (cold) and receives heat from them : @,, and Q.. For example
if @, > 0 then the machine receives heat from the warm source.

Over a cycle, AU =0, AH =0 and AS =0.

Carnot-Clausius inequality

WehaveOzAS:Se—i—ScsoOgSC:_T___SO A )

5.5.1 Motors

For a motor, W < 0,Q,, > 0,Q. < 0 : the energy is drawn from the warm source in order to produce
work.

. linteresting| w ) ) T,
We define its yield | = ————— = ———|: always smaller than the reversible yield | a0z = 1 — =—
|costly| Qu

5.5.2 Fridges

For a fridge W > 0,Q, < 0,Q. > 0 : it receives work in order to make the cold source colder and the
warm source warmer.
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i ) linteresting] Q. ) ) T,
We define its efficiency | e = ————————— = ——|: smaller than the reversible efficiency | €00 = =———|.
|costly]| W Tw —Te

5.5.3 Thermic Pumps
A thermic pump works the same as a fridge, but the objective is to heat up the warm source.

) ) linteresting| Quw ) ) Ty
Its efficiency is defined by | e = ——————— = ———|: smaller than the reversible efficiency | epqe = =————

|costly]| w Tw— T,

s o

To create artificial snow you pulverise water droplets at 73 = 10°C in air at T, =

Ex 24

Ex 25

—15°C. We’ll consider the drops to be spherical of radius R = 0, 2mm, of volumic mass
p = 103kg.m™3 and of massic thermic capacity ¢ = 4,18.103J.kg™".

1) First the drop cools while staying liquid. It receives a thermic transfer Q = h(T,—T(t))
(T is the drop’s temperature and h = 65W.m 2K ~!). Apply the first principle to a drop
between ¢ and t 4 dt in order to determine 7'(t).

2) When the drop reaches —5°C), it starts to freeze (so its temperature becomes 0°C).
Find the fraction x of liquid that still has to freeze considering the reaction to be quick
and adiabatic. We give L fyi0n = 335.103J.kg~ .

3) How long does it take the drop to solidify ?
Hint : To find the duration 7 find an equation on m(t)

We consider one mole of ideal gas (v = 1,4) undergoing the following cycle :

e Isothermic decompression from P4 = 2bar to Pg = lbar in contact with a ther-
mostat T = 300K

e Isobaric evolution to Vi = 20,5L (still in contact with T7r)

e Adiabatic and reversible compression back to state A.

1) Represent the cycle on a (P, V') graph. Is the cycle creating or receiving work ?

2) Find the total entropy variation between A and B then find S, and S.. Prove that
A — B is reversible.

3) Find the temperature in C, the work Wpe, the heat Q g as well as S, and S, between
B and C'. Is this cycle possible ?
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Ex 26

We consider then CARNOT cycle for thermic motors that use water :

e State A : liquid water at P; = 0, 2bar, T1 = 60°C.

A— B:
B—C:
C—D:
D—FE:
E—A:

adiabatic and isentropic compression to P, = 15bar.

isobaric heating to T5 = 200°C so that Py = Pyq(T2).

total vaporisation. (isobaric and isothermic)

adiabatic and isentropic decompression into a liquid-vapour mix at 77.

total condensation.

1) Draw the cycle on the given (P, h) graph.

2) Compute all the heat transfers using the values of h on the graph.

3) Compute the yield of the cycle and compare it to the CARNOT yield. Explain the
causes of irreversibility.

Eau
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=== S=au—-—
e e e e S Sy
1 320 ; 7
070} SN S S— M A/ . X
————— e e e S
- e ] 7 A7 7 /2 A SO X
\ 2 /A /A S/ B (B S
Tr 209 i i // / / 74 B / [ B\ X]
| 140 { /i /
-~ 10 i V)Z y ——. /, y J ;W L
£ i ; Ve ~ / e — # 7 L maA
R ] S f 7 7 A i v S M
£ ‘ R 7 7 7 7 7 J s 8 11%
5 [ | 7/ ] 7 /4 [ 1)
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; 5 e =
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We condider a thermic exchanger (TE) with two
circuits of air (considered an ideal gas of molar mass
M = 29g.mol~! and of constant v = 1,4). It is an
open system with two entries with the same mass

.. Ey —_— I
transfer rates. We suppose that the TE is in per-
manent regime, that it is heat-isolated and that its 1 )
functions reversibly. E, - Fy

On one pipe, the air goes from state F; (tempe-
rature 77) to state Ey (at T3), and at the bottom
from E3,T3 to Fy4,T4.

Ex 27

1) Apply the two industrial principles in order to get two relations on the 7;.
2) Prove that Ty = T5 and T3 = Ty.

3) In reality, T1 = 350K, Ty = 290K, T3 = 280K and Ty = 340K . Compute numerically
the created entropy for a mass m = lkg of air going through the TE. Comment upon it.

4) In reality the system isn’t perfectly isolated : it transfers heat with the atmosphere
(Thermostat at Tp). Find the expression of the heat transfer @) received by the air for a
mass m = lkg and give the expression of the created entropy.

Optics

N Diopters

c
For a transparent medium in which the light has a speed v we define its index n = —
v

We note the wavelength of a light ray A\g in vacuum and A in other mediums.

A light ray is a model of a photon’s movement. We represent it by a line.

Fundemental laws of geometric optics

e In a transparent, homogenous and isotropic medium, the light rays are straight lines.
e All light rays are independent.
e A path taken by a light ray can be taken in both directions (inverse path principle)

g _D:inition

A diopter is an interface between two mediums of different indexes.
We define the incidence angle i as the oriented angle bewteen the normal to the diopter’s
surface and the light ray.
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Consider a light ray approching a diopter with an in-
cidence angle i1 at the interface of two mediums of in-
dexes n1 and ns.

First Law : There is a reflected ray that returns in the
first medium with an angle ¢’. There is a refracted ray
that goes through the diopter into the second medium
within the incidence plane at an angle is.

Second Law : ‘i’ = —¢ and nysini; = ngsin iy

If n1 < no, the medium 1 is said to be less refringent
than the medium 2 and the refracted ray approches the
normal to the diopter (ia < i1)

If n1 > no, the medium 1 is said to be more refringent
than the medium 2 and the refracted ray goes away
from the normal to the diopter (i1 > i)

\.

| 4

Example : 2 diopters.

Limit refraction

Consider a dioptre at the interface of two mediums with n; < ns. There is limit refraction

. ™ . . . ny
when i; — 5 In that case there is a limit refracted angle o so that sina = —.
n2

\.

Total reflection

Consider a diopter at the interface of two mediums with n; > no. There is total reflexion

T n
when iy —> 5 This is reached for a limit incident angle o/ so that sina’ = “2 If iy > o then
ny

there is no refraction.

Dispersive mediums

A medium is said to be dispersive when its index depends on the wavelength of the light ray.

CAUCHY’s empiric model says that for all mediums |n = A + 2 with A, B > 0.

A medium can have an inhomogenous index : salty water, hot air.

Classic exercise : The prism laws.

Objects and Images

An object point is the intersection of the light rays that go towards an optic system.

An image point is the intersection of the light rays that exit an optic system.
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There is stigmatism when the image of a point is a point.

For example the mirror is rigorously stigmatic. Furthermore for a mirror HA 4+ HA' =0

|

g _Dcinition

If the optics systems have a common axis of symmetry, we call it the optic axis. The system
is then called a central system. This will be the case in the majority of our studies.

There is aplanatism when the image of an object that is perpendicular to the optic axis is
perpendicular to the optic axis.

A mirror is rigourously aplanetic.

GAuUss’s conditions for a central system is to have little inclination on the rays and a small
distance between the rays and the optic axis. For a diopter it is to have a small incidence angle.

Under these conditions, we have approximate stigmatism and aplanetism.

\.

Example : the plane diopter.

Focus points

An object is said to be at infinity when it is infinitely far away from the optic system. The
light rays coming from it are parallel (example : the sun’s light rays).

Principal focuses

The object focus F' of an optical system is so that all rays passing by F emerge parallel to
the optic axis.

The image focus F’ of an optical system is so that all rays that enter the system parallely to
the optic axis pass by F”.
F and F’ always belong to the optic axis.

Secondary focuses

Consider an object at infinity that is not on the optic axis. The rays coming from it are parellel.
The emerging rays will all pass by a secondary image focus F.. All F! are in the same plane

as F'.

The image of an object by the system is at infinity when its entering rays pass by a secondary
object focus Fs. All F are in the same plane as F'.
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-II Lenses

Types of lenses

There are two types of lenses : convergent lenses and divergent lenses.

The object focus point of a convergent lens is on its left and its image focus point is on its right.
It is the contrary for a divergent lens.

The focal of a lens f’ is defined by f' = OF’. It is positive for a converent lens and negative
for a divergent one.

A ray passing by the center O of a lens is not deviated.

(et >

AB F'A FO
AB FO TFA

The enlargement formula |+ =

NEWTON’S formula : | FA x F'A’ = FO x F'O = — (f')?

—_

DESCARTES’s formula :

Q
S
2l -
=

B

We consider two convergent lenses of focals f] and f} and of centers Oy, Oy separated
by a distance e so that F{F; =e

Ex 28

1) Complete the diagram
2) Complete the path of a ray passing through the center of the first lens at an angle «.

3 Considering both lens to be an optic system of focal points F' and F’, compute Oy F’
and O F

4) Show that if e = 0, the system is equivalent to a convergent lens. Give its focal.

SILBERMANN’s method for finding the focal of a convergent lens

Consider a convergent lens of which we want to know the focal. There is an object AB
(with A on the optical axis and B perpendicular to it) on the left of the lens and a screen
FE on its right. We can adjust the position of the lens and of the screen.

There exists one position such that the image of AB, A’B’, is clear on the screen and of
the same size but is flipped upside down.

1) Draw this position. ~ 2) Compute the focal f’ in function of D = AA’.
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BESSEL’s method : Consider a convergent lens and
an object AB on its left. We have a fixed screen E
such that D = AC is a constant (C is the intersec- 8
tion between the screen and the optical axis). The
only movable part is the lens.

Show that if D > 4f’ then there exists two dis-
tances x12 = AO in order to have a clear image
of AB on the screen and find their values when
D > 4f'". Let d = |x1 — x2|. Compute f’ depending
on D and d.

GALILEO’s telescope. We consider two lenses : one convergent Ly of focal f] = 60cm and
one divergent Ly one its right of focal fj = —5em.

1) On what condition is the system afocal ? (This means that the image of an object at
infinity is at infinity.)
2) Draw the system in that situation. Draw the path of a ray going through O; at a

nonzero angle with the optical axis. Use the secondary object focus method.

3) We note B the used secondary object focus point used in 2) and o’ the angle between
/

«@
(OB3) and the optical axis. Compute the enlargement G = — using the values of the
«@

focals.

4 Ondulatory Optics

YN Definitions and theorems

g _Dcinition

We consider a scalar model of light rays : we modelise the signal by a scalar s(M,t).

A
A spherical wave is of the from s(M,t) = —e™t=Fr
r

A plane wave is of the form s(M,t) = spet=+?

At)—¢(B,t) AB
We define ¢(M,t) = Arg(s) the phase. We have p(4) — o(B,1) =

2w A
. Ap . o
The path difference |§ = )\2— . The order of interference : p = "
s
Interferences are constructive when 6 = kX and destructive when 6 = L;'l)\.

A wave surface is a surface for which all the waves have the same phase and went through
the same optical path.

The intensity of a light ray is I = (s?)

Malus’s Theorem

After an arbitrary number of refractions and reflexions, the light rays are always perpendicular
to the wave surfaces.
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Fresnel’s interference formula

| 4

Consider two light sources S1 and S5 of intensities I; and I5. The combined intensity is [I.

e If the two sources have the same pulsation and originate from the same source they are said

210
to be coherent and we have : | I = I; + Is + 2+/11 15 cos N There are interferences.

e In all other cases, the sources are incoherent and I = I1 + I.

Applications

Path difference for two coherent sources (Young's slits)

Consider two coherent sources S7 and So separated by a distance a. We watch the interferences
on a screen of vertical axis x at a distance D.

ax . . . . . . AD
Then |§ = ) The fringe spacing (distance between two dark fringes) is here |i = —

a
‘ vV
s ax Y i
Add a convergent lens so that F” is on the screen. Now | § = F and 1 = —
a

Moving the primary source

Consider a source S at a distance D’ from two slits that become secondary sources S; and So

by diffraction. Here S is at a distance x’ from the horizontal. {

ar az’

Wehave623+ ;

Rectangular source

wah
D’

I — I
We define the constrast ' = —=2 ™"
Imam + Imin

. For a rectangular source of size h, C' = |sinc

Influence of the spectral width

For a sodium lamp, there is emission in two close wavelengths in the yellow A1, Ao. We study the
interferences through YOUNG slits. We define o; = /\% There is interference and C' = |cos Ao o]

Diffraction gratings

Grating formulas

A grating is a repetition of slits each separated from the same distance a.

e In transmission, | § = a(sin O,y — sin ;)

e In reflexion, |§ = a(sinr + sin4)
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‘ Magnetostatic

- -
The volumic current vector j is so that I = // J (ﬁ

Biot and Savart’s formula (for use in case of absolute despair)

Mo’ip(Fp) A WW

For a circuit C, the magnetic field at a point M is ?(M = 55 PPZIVE
0

pPeC

—
drPM
It is the analogue of E(M) = /// ﬁ
TEQ

PcR3

Symmetries for §

]

? is a pseudo-vector :
§ is orthogonal to symmetry planes is is parallel to antisymmetry planes.

For the field emitted by a current loop, use the corkscrew law to know the
direction of ?, and remember LORENTZ’s force F' = q(ﬁ + 7 A 3)

Vector Potential

]f

There exists a vector potential A so that B = r_o_‘E(Z)

Maxwell-Thomson’s equation

|

e Integral form : # ﬁ(M)(ﬁ = 0| for all closed surfaces S.
MeS

e Local form : div? = 0| at every point in space.

We consider a current loop of intensity I and of radius R. Prove that along the axis,

= ————u; | then compute the radius of a field tube in the vicinity of the axis.

2(R2 + 22)3 ’

First "'passage relation"

5|
3
Il

5|
=

At the interface of a surface containing a surface current :
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Maxwell-Ampere’s equation
|

e Integral form : yﬁ g(P)(Tp = 1o leniaced | for all closed circulations C.
PeC

—
With 1o joeeq = // inr-dSar
MeS

— 2 . 5 q
e Local form : rot? = o j | at every point (in static).

\.

pol
o2rr
Consequence : d1V j =0, So we have the node law.

Example : for a charged wire of intensity I, §

Second "passage relation"

-
At the interface of a surface with a surface current js, | Bo — Bl = po ]s AT -2

Examples
e "Current tablecloth"

e Infinite Solenoid : B = ponl u (solenoid of axis L , loop density n and intensity I).

Magnetic Moment

For a plane circuit of intensity I and of oriented surface S77, we define its magnetic moment

M=157]|

%
We now consider a magnetic moment M created by a dipole at a distance r > a (the size of the
dipole).

Reminder : the electrostatic dipole

| 4

For an electric dipole moment ?, the electric potential is (in spherical coordinates) :

B pcos b
 Amegr? |
— oV 2pcosé 10V psinf
T, sfinge B = - gpadl, B = = DY e o PR
e SIee S or  4mweors and 2o rd0  4megrs

— —
For a uniform external field F.,:, the dipole receives a couple ? = ? A Eegt

—

The electrostatic potential energy is | E}, = —?.Eem (Eezt can be nonconstant here)
By analogy :
Magnetic Dipole Formulas

|
M
In spherical coordinates, = ZO - (2 cos 0w, + sin 9175)
Tr

s —
For a uniform external fied By, ? M A

B
— —>
In all cases, the potential energy is —M.Be,

»Eji
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TD

F

We consider a source S moving along the axis ' such that S,» = vt. Its light rays go
through two YOUNG slits separated from a distance a and disposed symmetrically on
each side of the optical axis. The slits are at a distance L from the z’ axis. After the
slits, a convergent lens of focal f’ is disposed so that F”’ is on the screen.

What do we see on the screen ?

1) We consider an infinite cylinder of radius b; and of axis z containing a volumic current
j = jui. Compute the value of § everywhere, and give an instrinsic form.

2) We consider the same cylinder but with a cylindrical cavity of the same axis but of
radius by < b1. Give the value ? everywhere.

3) We consider the first cylinder but with a cylindrical cavity of radius by and axis 2’
parallel to z with 22’ = 2a. Find B inside the cavity in an instrinsic form.

A cylinder of length [ and radius a is turning along its axis at a constant angular speed
w. It contains a uniform volumic charge p.

Using approximations, compute the created field § everywhere.

_Ex36 _J Ex35 J _Ex34 J Ex33

By analogy with the electric field, we consider the gravitational field ? that satifies
GAUsS’s theorem :

° # 7(@ = —47G M (Min: being the mass inside the chosen volume)
o divy = —4nGp (1 being the volumic density of mass).

We consider the ground to have a uniform volumic density of mass . We want to find a
hidden ball of gold (volumic mass u) at a depth h and of radius a. What is the variation
of the gravitational field at ground level above the gold ?

Maxwell’s equations

BN Generalities

We are no longer in static!

Maxwell’s equations - local form

MAXEWELL-GAUSS divﬁ _r
€0
MAXEWELL-THOMSON div§ =0
0
MAXEWELL-FARADAY Hf = 5
— 8@

MAXEWELL-AMPERE ﬁc? =puoj + 50#05
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Charge conservation

—
The charge conservation equation is or +divy =0

|

ot
Integral forms

MAXEWELL-GAUSS # .46 — Q;”t
0
MAXEWELL-THOMSON # ?(ﬁ =0
d
MAXEWELL-FARADAY }5 ﬁgf = _%

. d
MAXEWELL- AMPERE 515 ﬁgi = toleniaced + so,u()%

Potentials

A
B =it d (the vector potential) and E = —gr?iv - 68_15

Field energy

Volumic expressions

If all particles have the same speed, | j = nq? where n is the particle density.

%
The volumic force applied to the charges by the field is | f, = pﬁ + ? A ﬁ

—
The associated volumic power is | P, = j ﬁ

Poynting’s theorem

Consider Uy, the electromagnetic energy and w its volumic counterpart.

EAB
The field radiates a power | P.,q = # ?(ﬁ where | 7 = , POYNTING’S vector.
Ho

The field gives a power | Py = /// ?EdT to the charged particles by JOULE effect.

dUep,
POYNTING’s theorem in integral form : Eraai # ?c@ — // 7.ﬁd7'

0
In local form : a—l: = —divF — 7? with w =

50E2 32
+ R
2410
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. Q? . poN?i%S
Examples : electric energy of a condensator : F¢c = 20 for an inductance : Ej, = o

EM waves in vacuum

D’Alembert’s equation

XE 1 82E K? 1 32§

“agm AP agm herefume =l

In vacuum,

N3 Approximations

Electric ARQS

l

ARQS : Approximation for Regimes that are Quasi-Stationary (french acronym).

0
We consider that in the electric ARQS, ,uo?> < €0uow and r_o%ﬁ = 6)

Here you can consider the static equations for E (but not ?) We say that ﬁ adapts instantly
to the changes in charge. This approximation is very rarely used.

Magnetic ARQS

l

oF

%
Here we consider that L ~ 0 and poj > eopo e
€0

Here you can consider the static equations for § (but not ﬁ) We say that ﬁ adapts instantly
to the changes in current. This approximation is used very commonly.

By  Conductors

Drude’s model

l

DRUDE’s model is a study of the electrons inside a conductor using classic mechanics, adding a
friction force f = —a®.

An alternative study is to modelise the friction by impacts between the electrons.

E

= 'yﬁ where v is the conduc-

For a conductor with a current at a frequence f < 10 Hz,
tivity of the conductor.

Electroneutrality in a conductor

N

In a condutor, or + lp =0
€0

ot

In the conditions of OHM’s law, we can apply the magnetic ARQS inside the condutor.
Examples : resistors in static :

e For a cylindrical resistor, R = —
~vS
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Ry
ng

2ryH

Laplace’s force
4

The volumic LAPLACE force is ﬁ) = 7 A ? The small force on a portion Ef is (FL> =1 Ei A ?

e For a hollowed out cylinder R =

— —
The resultant on a circuit C is | F, = ¢ I Ei A Byt |

The resulting moment is IT; = 515 O? A I _i pA Bewt )
eC

_>
The magnetic moment of the current loop is M = I.S . By analogy with magnetic dipoles :

— = e —é
If Byt varies little at the scale of the circuit, | F;, = —gradE, = grad(M. § and F L= M A ﬁ

— - =
If B, is constant, then Fj, = 0.

BN °

We consider two current loops (1) and (2) of radii R; > R with currents I; and I,
disposed along the same axis (Oz) separated by a distance D. Our objective is to find

the LAPLACE force applied to (2) by (1) : Fi_2
1) Usin O; as origin, give the value of B; along the axis of the loops.

2) Considering a cylinder of radius r and length dz, find E{ (r, z) close to the axis.

—
3) Compute Fj_,o.

%
g We modelise lightning by a cylinder of radius a = 2ecm with a current I = 50kA (j is
5¢ uniform) with everything in permanent regime. Find the pressure P(0) at the center of
88 the lightning.
%

We consider an infinite cylinder of radius a, intensity I ( j is uniform) and conductivity

5.
% 1) Find E and B.
|i|< We now consider a portion of height h of the previous cylinder.

2) Find ¢ the flux of POYNTING’s vector on the portion.

3) Knowing that the power associated JOULE’s effect is P; = RI?, find the resistance R
using an energetic equation on the cylinder.
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Electricity

INRN  General Laws

The tension between points A and B is uap = V4 — Vg

q 5 5 . . U=Va—Vp
Conventions : for a generator the tension goes in the direction of the current,

for a receptor it goes in the opposite direction of the current. _E_‘:I_A_

Loop law : the alebric sum of the currents along a loop is 0.

dg
dt’
Node law : the algebric sum of the currents going to a node is 0.

The intensity I at a point in the circuit is I =

Condensator

A condensator has a capacity C' (in Farad) such that ¢ = Cu.

du
For a condensator, i = C T and the tension of a condensator is continuous.

A coil has an inductance L (in Henry).

di
For a coil, u = L—
dt

I3  Complex notation

For a quantity x(t) = z,cos(wt + ¢), we associate its complex representation z = z,e/! with
Tm = Tme’?. We have £ = Rex.

x
The derivative of x according to time is therefore jwz. An antiderivative of  according to time is —.
Jjw

The complex impedance Z(w) of a dipole is Z(w) = =.

SIS
I
—
3
=

IN

For a resistor, Zp = R, for a condensator Z, = and for a coil

Zy, = jwlL.

JwC
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0] Impedance association

Association in series

|

For impedances Zj, in series, Z., = Z Zy .
i

Association in parallel

|

1 |

For impedances Z;, in parallel, ——= 3" —- u gl

or 1mpedances Zj 11 parallel, VA Z -
Z

=€q k=1

Tension dividor

lf

Ly,
n

The tension uy, on Z;, is u, = e . (The Z, are in series)

Z,

a=1

Where e is the tension on all impedances combined.

Current dividor

1

1

Zy

(The Z, are in parallel) I

The current ¢;, on Zj, is ¢;, = &

> 2, z Z
a=1

Where ¢ is the current on all impendances combined.

Milmann’s theorem

|

_1 £k
Then V,, = =1

"1
).
k=1

N

k

\.

Consider a node N of potential Vy attached to n impedances Z;, of potentials V.

Example : Series R,C circuit.

I0YY Resonance

Two examples :

e Resonance in ¢ in a R,L,C circuit

e Resonance in x for a mechanical forced oscillator.
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-m Filters
g _D:vition

A filter is a device that selects certain frequencies. In electricty we consider an entry tension e
and an exit tension s.

Sm

We define the transfer function of a filter by H =

I | l»

€m

We define the yield of the filter as G = |H| and the decibel yield G 5 = 20log G.

)

max

V2
<G

We define the cutoff pulsation w. so that G(w.) =

max

V2

Pass-low of the first order
| 4

The bandwidth is the interval in w such that (w) < Grmag-

A 1 w
The canonic transfer function is | H = —|. For a R,C circuit, 7 = RC, wg = —, x = —.
14 jz T wo
Cap cassure en = !
20 j t
0 T~
I \ ~0
~20 AN 7
N s
NG
) NG =
—40 ot
-
—60 o (rads™!)
R 1 10! 102 103 104 10° 106 107
e C M
@ passage par _r en@= !
0 ; 4 T
N
—r/4
\\_
—r/2 o o (rad.s71)
0! 102 10° 104 105 106 107
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Pass-high of the first order
4

. . VES
The canonic transfer function is | H = — |.
1+ jx
Gap cassure en @ = 1
20 ‘ f
’ éw\{(g/’—
20 | Al
&
P\Q@/ ]
—40 jﬂ g
—60 o (rad.s™")
¢ 1 10! 102 103 10* 10° 100
n/z(p passag;: par% en = %
/4
N
0 s - o (rad.s™")
1 10" 10? 10° 10* 10° 100
. o A
The canonic transfer function is | H = 1
1+5Q (:v — )
T
F R,L,C circuit ! Q L /L L L We define £ L
or an circuit, wg = — = /== = wop—. We define £ = —.
Y ’ VLC' RV C RCuwy R 2Q)
Gug
20
_/YY\_| 0 AL N
L 7(-L // /’, ‘=§...
c —20 ,m A N
LA T2 A \\.\ T
e R S Z A )
—40 ,% ] N, ™
=gy ST
Qé%\ /déo\\\
ol K
—80 L1 | | Il )
&z D o 100 107y
0 10 10
/2 San
\\
N
N
N
N
\
0 w
\\\
—r/2 [T
o Do o o 10ax 107wy 103wy
103 102 10
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Pass-low of the second order
|

1 V2 V2
The canonic transfer function is | H = A—— | Resonance when Q > =N or £ < =N
jx
1— {172 e 2
Q
Giap £=6.1072
20
AT
0 A5 =0.3
S
—20 E=2/2 | ‘ ]\
Y Y | N
40 =14 N5,
L %
R — %
e C__ | —60 NG i
(s
—80 —
D % 1o} 10" g 10%ay
102 10
¢
0 =17
N
N
N
N
\
—n/2
\\\.
D Do ) o 10a 10%ay 103wy
103 102 10

Pass-high of the second order
|

—z2 V2 V2
The canonic transfer function is | H = A—— | Resonance when @Q > - or £ < -
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D

F

We consider the series circuit F,r, L, R to which we add
a condensator C at t = 0.

1) Give i(07) and i(0™).

%) Find &
1n dt

t=0"*

3) Provide a differential equation on ¢ at ¢ > 0.

This is a motion sensor. Under mechanical constraint, «
varies and we measure a difference in the tension w.

Find an equation linking F,« and w. (Hint : consider
the potentials at every corner of the square and impose
a mass)

After having given the behaviour at high frequency and low frequency, find the transfer
function and put it under the form :

X

J 0 W
———— with x = —. Give the values of wg, @ and Hy.
T wo

1—x24j
Q

Study the following filter :

. Exa3 F  Ex4a2 J Ex41 F  Exd40 |
=
I
=
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I8 Induction

INMN Effect of LAPLACE's force on circuits

Two examples : LAPLACE’s rails and a rotating current loop.

I8  Neumann Induction

NEUMANN induction is when the circuit is fix but the magnetic field varies.

Consider a current loop determining a surface S and ¢ = // ﬁ(ﬁ .
S

If ¢ varies, then there is an induced current inside the loop. This current causes a LAPLACE force and

an induced field EZ

E

Induction opposes its origin : the induced currents cause a LAPLACE force that opposes the
cause of the induction.

| 4

Faraday’s law

i

d
If the flux ¢ of the circuit varies, then an electromotive force is inducted in the circuit |e = —d—(f

Auto-induction

l

%
Consider a circuit with an intensity 7. There is a self-field By created because of the current.

This self-field has a flux on the circuit, ¢s with .

L is a constant (property of the circuit) called the inductance of the circuit.

di
Therefore all circuits have an auto-induced electromotive force e; = —La

Mutual induction

],

Consider two coils (1) and (2). They emit self-fields 31 and ?2 that have fluxes ¢1_,5 and ¢o_,1
on each other.

: - do12 diy

There are therefore induced electromotive forces. In (2) : €19 = — 5 - Mg
dgo1 diy
nd in (1) : ea1 o 217

NEUMANN’s theorem is ‘M1_>2 = Ms_,q

\.

Example : a coil inside another. In that case, M? = L{Ls
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Energetic study of mutual inductances :

M 2
/—\ L2
Ry
LORENTZ induction

LAPLACE’s rails, an example of the law ‘PLapalce + Paec =0

Speakers :

membrane
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TD

F

Synchrone Motor

A motor is made of a "stator' : creating a field ﬁ =
Bou‘(t—s and a "rotor" : a current loop with IV loops, of
surface S and intensity I, rotating at a constant speed
Q with an initial angle o and a normal vector 77.

H
Find T';,(t) the moment of the electromagnetic forces

—
on the rotor. Find its average according to time <F m>.
Why is this called a synchrone motor ?

Asynchrone motor
We consider the same motor as in Ex 1, but the stator is rotating at w’ and the rotor at
w < w'. Furthermore, the rotor is now a circuit of resistance R and self-inductance L.

Find <?> the average moment of the electromagnetic forces on the rotor. Why is this

called an asynchrone motor ? What value of w’ —w gives the best efficiency for the motor ?

%
E
Find the speed ¥ (t) of the rail : <>] ®s¢

iI¥4 Electromagnetic Waves

IPRN EM Waves in vacuum

g _Dcivition

A plane wave of axis along U is a wave for which ﬁ and ﬁ are uniform in any plane perpen-
dicular to .

In this case, the fields are under the form 3(77, t), 3(77, t)

A plane progressive wave (PPW) going in the direction U is of the form 7(77 —ct)

Structure of the PPW in vacuum

In vacuum, , ﬁ, B are directly orthogonal, ¢B=7A E, E =cB AW and ||E|| = c||§|| r
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IEREITERN

A wave is plane progressive harmonic when ﬁ can be written under the form :
_>
Ecos(wt — k.7 + ¢q) — —
ﬁ = Eg cos(wt — ?7 +y) |- With the complex notation : E = Eoei(“t_k?) (
2 L0
Ecos(wt — k.7 + @)

=

k)
. 9 : —
Computation rules : e “ Xiw, ? =—ik

Dispersion relation : |w? = k2c?

| 4

CEoEg

0
For a PPHW of direction %} in vacuum, (77) = — and 8_7;‘0 +dive =0

J

| 4

1
Method : for computing the average of fg when f and g are of the same pulsation, | (fg) = §Re ( @*)

(g* is the conjugate of g)

Consider a PPHW of direction u}. Then E = EQ cos(wt — kz + g ) ug + EJ cos(wt —kz + 0y )y

e There is linear polarisation when ﬁ describes a segment :
when EJ = 0 or Ej = 0 or ¢, = @[]
e There is circular polarisation when E describes a circle :

T
when EJ = E) and ¢, = ¢, & 5[277]

e In other cases, there is elliptical polarisation and ﬁ describes an ellipsis.

IPWA EM waves in a diluted plasma

g _D:inition

The dielectric constant ¢, of a medium is value (often complex and depending on w, the
pulsation of the waves), is so that the permittivity of the medium is .

g Dcivition

A plasma is an ionised medium (with free electrons and ions). It is said to be diluted when
the density of particles n is small enough to neglect the interactions between charges.
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Properties of the EM waves in the diluted plasma

| 4

For a transverse PPHW in a diluted plasma :

e There is a complex volumic current vector j = —ned

n€2

e There is a complex conductivity v = -
- dwme

%
o OHM’s law is satisfied : | j = ZE

2

) ne
unless if w = wy, =
MeE
2

— 1 823 w
The propagation relation is AE = + —gﬁ
c

the plasma pulsation.

[ ]
o

2 o2
e The dispersion equation is | k*c? = w? — wg , the medium is dispersive.

\. J

i(wt—kz) (

The solutions of the propagation relation are of the form Ze propagation along QTZ))

— 1 —a 2 ) )
e lfw<w,: k = 517; and E = Epe™'e™ 5, there is no propagation : only an evanescent wave.

w2 2

—w
o If w>w,: k=4 ———= PPHM can pass through.
c

Wave packets

Plane progessive harmonic waves don’t actually exist. What we see in nature are superpositions of
PPHW called wave packets.

Speed of the wave packet

| 4

The phase speed is the speed of one wave in the packet that has a pulsation w and wave vector

fnorm k : | v, = o
of norm & : | v, = —
. dw
The group speed is the speed of the packet : |vg = T
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EM Waves in conductors

We consider the conductor for frequencies f < 10 Hz :

- 0
In particular we have the M-ARQS :|| j || > 05 and OHM’s law.
e There is a complex volumic current vector j = —ned
ne? ne?
e There is a conductivity v = —— ~ —

- WwMme + « leY

%
o OHM’s law is satisfied : | j = 'yE

at the forced sinusoidal regime (RSF in French).

The propagation relation is | A E = pgy——

The dispersion equation is | k% = —iwypug |

e EM waves polarised on 1732 going in the direction 17; are E = @efz/‘sei(”*z/é)@

Relexion on an EM wave on a conductor '

Consider an incident wave E = @ei(wt_kz)@ going towards +, (the normal of the surface).

wt+kz)

— .
e There is a reflected wave E, = z&ez( 1Tx> goind towards —IT;.

r is the reflexion coefficient in amplitude.
e There is a transmitted wave E = z&ei(“t_gz)uj )
t is the transmission coeffecicient in amplitude.

Q is the wave vector of the wave inside the conductor.

R . (7). (—zz) ()22
The coefficients in intensity are R = ——=—-and T = 5 —
(m;).uz (m;).uz

Ideal conductor

%
In an ideal conductor, E = ﬁ, § = 6}, p=0,v— +oocand 53 = 0.
Here r = —1 and ¢t = 0.
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VRN EM waves in a cavity

Confination in the propagation’s direction

We consider a cavity of length L along ug, the direc-
tion of propagation. For x < 0 and z > L we have
ideal conductors.

We solve the propagation equation for a field of the
form E (z,1) = f(2)9(t)i5-

We obtain stationary waves :
ﬁ = FEjysin nre cos n7rc++ i
nme

There is resonance in w as it is quantified : w = I

Wave guide

We consider a field E@ going in the direction u inside a cavity between two ideal conductors
that are in the semi-planes x < 0 and x > L.

We look for solutions of the form E = f(x)e’“!=2)

nrr\
The solutions are E = Epsin (T) eilwt—k2)a;

nmwe
The dispertion equation is w? — w? = k2¢? with w, = I The wave passes only if w > w,

wc

We have v, = 5

and vyvg = ¢ (for w > w)
w

()2
We

This is the same behaviour as in a plasma.
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BN °

We consider a field E = E(r)e'@t=F)52 caused by a source along Oz (cylindrical coor-
dinates), evolving in vacuum.

10A, 0Ag
r o0 Oz
0A, OA,

, compute ﬁ

1) Using the formula g g

0z or
1/0(rAg) 0A,
r\ or 00

r

2) Determine 7 and then (7).
3) Find the power P radiated through a cylinder of radius r and height h. Explain why

a
P doesn’t depend on r, and prove that E(r) = — with a a constant.

Jr
4) Give the values of E and E when r > A\ and determine the wave structure.
. 10 ( oU\ . . . .
5) Using AU = el e if U = U(r,t), find the dispertion equation.

We consier a coaxial cable with a capacity I" per unit of length and an inductance A per
unit of length. We modelie the cable locally by the following circuit :

| o8

i(x - 1) Adr o 4 de - )

u(x - t) —  Tdx w(r +da-t)

Determine the propagation equation for v and ¢, as well as the disperstion equation and

the characteristic impedance Z¢g =

I | |2

We consider a string with a mass g per unit of length. The string is along u; and can
move up and down along 17y> We note the tension T (x). We neglect the weight for
questions 1) and 2).

1) Prove that ? is continuous, we’ll consider it to be constant. Find the propagation
equation of a wave u(x,t) going along uy (u(xz,t) is the value of y at (x,t)). Give the
celerity ¢ of the waves and their expression.

2) We now impose u(0,t) = Up cos(wt) and u(L,t) = 0. Find the expression of the wave
depending on w.

3) Give the propagation equation and the dispersion equation without neglecting the
weight. Is there dispersion ? Can waves still pass?
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Proof of Descartes’s laws in geometric optics

We consider an interface at the plane 2z = 0 between two mediums 1) and 2) of indexes n; and ny. We
consider both mediums to be abstent of charges and we neglect surfacic charges at the interface.

We consider an incident PPHW ﬁ ej(wlt RT) passing by the origin with an angle ¢ with @

. win1
(the normal to the dioptre). We have therefore k; = || ki I = :

— . — — WyT
There is a reflected PPHW E, = @ej(wrt*k“?) with k, = ||[k|| = — !

There is a transmitted PPHW ﬁ ej(wtt RT) with k; = || k‘t | =
Ox.

%
1 ) Prove that all the waves are at the same pulsation, that the wavevectors k: satisfy k:l 1Ty> = kr.@ =

kt u, and that they are in the same plane.

wny wng
2) We now note k1 = — and kg =
c c
Prove that |r| = |i], that k; = —k, and that n; sin(i) = ngsin(d’).

. . . na
3) We consider the case i > Arcsin (

) and ng < ni. Can a light ray pass through the diopter ?
n1

ﬁ
Find the transmitted wave under the form ﬁ e] j(wit—ke . 7)

isit?

with k; complex. What type of wave

Give the numerical value of the characteristic propagation distance § with ordinary parameters.

Fluid Mechanics

IBWN Static of Fluids

>

F
dr’

The volumic force & attached to a force ? is @ =

H
The elementary pressure force is |§Fp = —P(ﬁ

The volumic pressure force is cﬁa) == gragP

The resultant of the pressure forces on a volume V' is therefore ? = /// —gragP dr

If the pressure is uniform, then ? = 0 : the force on a closed surface is in this case 0.

Static of fluids

—
Inside a static fluid, | grad P = Z @ (the ; are the forces that are not pressure forces)
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The resulting pressure force on a object of volume V and density p subject only to pressure
and its weight is | T4 = —/LV?

Its point of application is the center of gravity of the solid.

Example : Resulting pressure force on the lateral surface of a submerged cone.

—
To find the point of application A of a pressure force, use / AM N P(M )(ﬁ =0

.

g _Dcivition

—

MeS

IBWA Flow rate and conservation laws

A current line is a line tangent to the speed field.

dx d dz
Since ¥ and ﬁlme are colinear, — = Y —
U @y W

Given a circulation I', a current tube is the tube formed by the current lines passing by I

Mass current and mass flow rate

For a fluid of volumic mass p(M,t) and of speed field o/ (M, ) :

%
The mass current vector is | j,, = ,u7

- .
The mass flow rate across a section S is | D,,, = // ]m.(ﬁ in kg/s
S

oo

Mass conservation

: .| Op =
The local mass conservation equation is i —divjm,
.. |dm =32
For a volume of external surface S, the global equation is i Tinadl
S

Volumetric flow rate (or "discharge")

The volumetric flow rate accros a surface S is D, = // 7(@ in m3/s
S

Stationary Flow

There is stationary flow when all variables are independent on time.

In this case we have divj,, = 0 which gives the node law for mass flow rates
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Homogenous and incompressible flow

There is homogenous and incompressible flow when p(M,t) = cte.

In this case we have div = 0 which gives the node law for volumetric flow rates

Contact action on a flowing fluid

For a fluid of viscosity 7 (in "Poiseuille Pl = kg.m~1.s71)

N 0%
For a flow towards +u, with o = v(z, t)zT;, the volumic visocity force is : ¢, = nﬁ(x, t)iTZ>
z

ov

ov N
8$($ +dz,t) — —(=, t)) ul

The local force is 5? = ndydz ( 3
x

For a cylindrical flow along +u, with ¥ = v(r, t)u_g :
ov

0
The local force is 6 F = n(r + dr)dﬁdza—:(r + dr, t)u; — nrdfdz 8T(r, t)us

The volumic viscosity force is therefore ¢, = n—— | r—
ror \ Or

_>
In general, | p; = nA Y

J

.

Method : in practice, either use the general formula (for simple coordinate systems) or prove the

local force’s expression.

Adherence conditions
Vv

Consider an interface between two fluids at the local plane z = 0. We consider @ the normal

to the surface. We consider each o7 = vz(x)@

The continuity of the speed field imposes v;(0) = v2(0) (continuity of ¥/ .u2)

o - : doy dvy
The reciprocity of the viscosity forces imposes 7, d—(O) =12 d—(O)
x x

.

Examples : COUETTE and POISEUILLE plane flows, POISEUILLE cylindrical flow.

Homogenous incompressible flows in a pipe

In this part we consider pu = cte.

g _Dcinition

The average speed in a pipe of section S is |U = <

=

APR?
Example : for a POISEUILLE flow on a distance L and a pressure difference AP = P —P,, U = ST
n
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Momemtum diffusion current vector

|

We consider a speed field v(z, t)lT; . We define the cinematic viscosity |v = 1
o
e —
The momemtum diffusion current vector is|j, ¢irf = —vgrad(uv,)

We have the momentum diffusion equation : |v =

0 (pvz)  9(pv,)

0z2 ot

| 4

Momentum convection current vector

|

For a speed field v(z, t)lT; , the momentum convection current vector is j, cony = ,uvz7

Reynold’s number

l

' Ud
Intuitively, Re = C M We define | Re = —
7. dif £ v

of the pipe and v the cinematic viscosity.

Reynold’s number is a quantity that determines the type of flow.

When Re < 2000, diffusion dominates and the flow is laminar.
When Re > 2000, convection dominates and the flow is turbulent.

where U is the average speed, d the diameter

Flows with small Re

|

8nL

Fn = R4

The HAGEN-POISEUILLE law is | D, R, = P, — P, | For a change of pressure from P; to Ps.

The hydraulic resistance of a cylinder of radius R, length L with a fluid of viscosity 7 is

IR Macroscopic Equations

An ideal flow is a flow without diffusive behaviours : no viscous forces, no thermal diffusion

and thermodynamic irreversibility.

Bernouiilli’s equation

For an incompressible, homogenous, stationary and ideal flow :
K¢ is a constant depending on the current line.

\.

P+ gz + %;wQ = Kop,

where

g _Dcivition

The total pressure is P,y = P + ugz + %,sz.

The static pressure is Ps = P + ugz
2

The dynamic pressure is Py = %;w
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Examples :

e VENTURI effect : if the speed locally increases then the pressure locally decreases.

e CoANDA effect : if you blow air on a ping-pong ball with a hair drier, it will draw the ball in

rather than push it away.
e VENTURI’s rate meter.
e PITOT’s tube : a tool for measuring the speed of a fluid.

e TORICELLI’s formula : for a leaking container of height h, v ~ \/2gh

Head loss ("'perte de charge")

tot

P,
We define the head as b
nyg

If the flow isn’t ideal, the can be a head loss between two points on the same current line. There
are two types of head losses :

e Regular head loss : loss of energy due to the pipe’s rugosity.

. QdAPtOt

In practice, we use a pipe’s regular head loss coefficient | A = —TU?
I

e Singular head loss : loss of energy due ot a local change in the pipe’s geometry.

_ 2AP
== |

We use the singularity’s singular head loss coefficient

2
s
For an abrupt increase in section from s to .S, { = (1 — S) , for a pipe bend ¢ € [0.45, 1.3]

\.

Reminder : the power given by an operator is | P = D, [P + ugz + %/w]g

Mechanical theorems

The momentum of the fluid within a system X is 7/ = // U (M, t) (M, t)dr
)

d *
For a closed system X, the Kinetic Resultant Theorem reads z = E ?Z
i

The angular momentum of the fluid within X is L_o> = // OM A (M, t) (M, t)dr
s

For a closed system ¥*, the Angular Momemtum Theorem reads

.

In practice we always use the local equation between t and ¢ + dt.
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IR  Fluid Dynamics

oY oY oY XTe

Consider a speed field 7(:1;, Y, z,t). Its differential is dv = dt + dr + dy + dz.
ot Ox dy 0z
_ dx v dt
During a time interval dt, a fluid particle travels a distance dr = Tdt : we get | dy | = | v,dt
dz v,dt
ov AW oY oY oY o
Therefore AU = 5 dt + B vpdt + 3y vy dt + P v, dt = Wdt +( .gra )Wdt.
7 — DY
So @ = a x d¥ = —+ (V.grad) 7. To avoid confusion we note @ = i

>

DY OW
- _ _
S TE R TR (¥ grad) ¥

i <

The vorticity is the vector 3 = —rot? .

—
The acceleration is V| (¥.grad) ¥ is the "convective derivative'.

For a incompressible flow, dive’ = 0 and §I§ 7.l =2 // 7.8 (AMPERE’s theorem)

_)
A flow is said to be irrotational when 2 = ﬁ

%
For an irrotational flow, r_ot>7 =70 so|? = graaqﬁ where ¢ is the speed potential

We therefore have LAPLACE’s equation A¢ = 0

General solutions of the LAPLACE equation for ¢ = ¢(r,0) are :

“+o0o +oo
o(r,0) = agIn(r) + fo + Z(anr” + Bnr™ ") cos(nf) + Z('ynrn + 0pr ") sin(nb)
n=1 n=1

Example : flow around an infinite cylinder.

2
— —
For the next theorem we use the formula (?.grad)? = gradf2 + rco?c? A 7

Euler’s equation

oY
8t +ugrad +urot7/\7 —gr?iP—l—?

Where ? is the resultant of the non-pressure volumic forces.

The volumic PFD yields | u

Example : oscillations of a fluid in a U-tube.

Bernouilli’s equation

For an incompressible, homogenous, stationary, ideal and irrotational flow :

P+ pgz+ %m}? = K | (K is independent of time and of position)

126



13. FLUID MECHANICS - 8H eloi.tanguy@polytechnique.edu

Examples :
e MAGNUS effect : a ball with top spin falls faster.
e Lift force on an airplane wing.

e Vortexes in the wake of airplanes.

Navier-Stokes equation

oY — —
The volumic PFD for a viscous fluid yields MW + u(?.gra )7 = —gradP + ,u? + nK?

LN

We consider an object of mass m sliding on
oil at a constant speed 5. Y 7

1) Compute the speed field ¥ inside the oil.
You may make approximations in order to el
simplify the computations.

2) Find the value of v. — x

Two non-miscible fluids are disposed one z
under the other in a pipe, with a pressure
difference P, — P; > 0.

oo

2 M2

[VIS)

Determine the speed field inside the fluid.

We consider a two cylinders inside each
other with a common axis z. The plane
z = 0 has a uniform pressure P; and the
plane z = L has a uniform pressure Ps.
We suppose that the speed field is of the
form v(r)u} in both cylinders.

1) Establish that at every point,
d dv . P2 — P1
dr T@ L " L

2) Determine o for a <r<R.

3) Find the hydraulic resistance R of

the part a < r < R and remind the formula of R; (portion r < a). For L = 1m,a =
2cm, R = 4em, give the values of R; and Ro. Can the resistance of a pipe of radius R and
length L be considered as an association of R; and Ry in parallel 7 Compare numerical
values.
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Ex 53

Ex 54

We consider a plate held by its

top part (axis A passing by O)

that is sprayed by a beam of

water at a speed o4 and width

e. This spraying pushes it to 2,8
an equilibrium angle o with N
the vertical. It has a length [ %\
and width L (L is perpendi- h
cular to the plane of the dra- 1 ‘
wing). The spray of water splits I G
into two : one going upwards el W
of width ey and speed 73 and
one going downwards of width
e3 and speed @

(=1

1) Associate a closed system :
to the flowing water and the

plate together and use the an- CoN A
gular momentum theorem in -
order to determine the equili-

brium angle a.

2) Determine @, @, e and eg as a function of the other parameters.

We consider a wave going upstream a river at a constant T

speed ¥. The speed of the river before the wave is 7, and

v_% after the wave. We consider the flow to be ideal and 7 e ha
incompressible. ol

Compute 7 and U3 depending on the other parameters. 2

@,

O

We consider an increase in section for a turbulent, homogenous and incompressible flow.
Compute the singular head loss.

Sa
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PART III

Tests

Maths December Test

Let 6 € R.

a) Expand cos(46) into a polynomial in cos 6

T
We now consider 8 = 5 until the end of the exercise.

b) Let ¢ = cos . Prove that 8¢* — 8¢ + ¢+ 1 = 0.

c) We give 8X* —8X? + X + 1 = (X +1)(X — £)(8X% — 4X — 2). Compute cos 7.

e

a) Prove that Vo € [—1,1], cos(Arcsin(z)) = V1 — 2.
b) Using question 2a), solve by Analysis/Synthesis the equation

(VE (1) =
Arcsin (2 + Arcsin 7)) "2 for x € [1,4]

Let n € N. Solve by equivalence the equation (z + 1)" = (z — 1)" for z € C.
Express the solutions in the most simple way possible.

1) We note F(R,R) the set of the functions from R to R. Let f € F(R,R).
FR,R) — F(R,R)

g — [fog
Reminder : for g € F(R,R), we have Vz € R, (fog)(x) = f(g9(x))

We define Ly : {

a) On what condition on f is Ly injective ?
b) On what condition on f is Ly surjective ?
2) Let E be a set. We define P(E) = {A|A C E} (the set of all the subsets of E.)

Does there exist an injection f : E — P(E)?

Does there exist a surjection f : F — P(E)?
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Physics December Test

BN The effect of friction on an orbit

We consider a satellite of mass m at a circular orbit of radius r around the Earth (of mass Mg).
1) Determine the potential energy E, of the satellite.
GMEg

2) Show that its speed is v =
,

3) Calculate its kinetic energy E, and compare it to E,,.
4) Express its mechanical energy E,,

We now consider that the satellite is affected by a friction force ? —amv?, in addition to the
gravitation force FG The orbit is now slightly elliptical.
5) What is the dimension of a?

— dE
6) Prove that P(Fg) = —d—tp.

7

8) Considering the value of E,, found in 4) to be true and the value of v found in 2) to be true, find
a differential equation on r.

dF,
7) Using the Kinetic Energy Theorem, prove that T

9) Is the satellite falling towards the Earth ? How does its speed v vary ?

A rotating circle
z

A circle of radius a is rotating around the z axis at
a constant angular speed w. We study the movement
of a ring M of mass m sliding on the circle (it moves
along it without friction).

1) Calculate the potential energy E,q(f) attached to
the drive force (force d’inertie d’entrainement).

2) Calculate the potential energy E,,(6) attached to
the weight.

3) Calculate the kinetic energy E.(#) of the ring in
the rotating referential.

4) Explain why we have the conservation of the me-
chanical energy. Differentiate that equation accor-
ding to tlme and prove : 6 = —w sin 0+w? sin 6 cos 0,
where w§ = £.

This re—writes into | (E) : 0 = wg(Acosh — 1)sinf
(with A = —2 )
Wo

5) We suppose A < 1. Using (E), find the two equilibrium points 841, 0cq2. Discuss their stability
without any calculations.

6) We now suppose A > 1. Using (E) find two other opposed equilibrium points £6y.

7) Let € = 0 — 6. Considering € to be very small, find a linear differential equation on £ and discuss
the stability of 6.
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Liner Filtration TP

Objectives of the TP :

e Study experimentally the filters seen in the Electricity lesson.
e Determine experimentally the nature of unknown filters.

e You must hand in a TP report at the end of the session. We recommend having a student per
team responsible of writing down the answers to the questions.

For all circuits, take R = 1002, L = 0,2H and C = 0,47uF.

Experimental study of the lesson filters

3.1.1 Pass-low of the first order

1) Anticipate the behaviour of the filter by giving the transfer function, give the theoretical value of
the self-frequency fo.

2) Build the circuit with R = 10082 and C = 0,47uF
3) Check experimentally the behaviour of the filter and the self-frequency, give numerical values to

explain your results. Use the "sweep" function to quickly find the nature of the filter.

3.1.2 Pass-high of the second order
R C )
& L j 5

|_/

1) Anticipate the behaviour of the filter by giving the transfer function, give the theoretical value of
the self-frequency fp and of the quality factor ). Is there resonance for R = 100§2, L = 0,2H and
C =0,47TuF?

2) Build the circuit.

3) Check experimentally the behaviour of the filter (resonance, self-frequency, behaviour at the ex-
tremes...).
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3.1.3 Band-Pass

AKVL\/\_H_

1) Anticipate the behaviour of the filter by giving the transfer function, give the theoretical value of

the self-frequency fy.
2) Build the circuit.

3) Check experimentally the behaviour of the filter (self-frequency, behaviour at the extremes...).

Study of new filters

3.2.1 First unknown filter

& _{;' 7

1) Anticipate the behaviour of the filter by analysing its transfer function. What type of filter is this ?
What use does it have?

2) Build the circuit.
3) Check experimentally the behaviour of the filter.

3.2.2 Second unknow filter

Study experimentally the filter. What type of filter is it ?
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