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We delve into theoretical considerations around Reproducing Kernel Hilbert Spaces (RKHS),
which is a field of Mathematics that is relatively far removed from Optimal Transport on which
the rest of this thesis is focused. To ease the reader into the topic, we will briefly introduce
the field of RKHS theory. This introductory chapter is based on blackboard talks given by the
author at the MAP5 laboratory in Paris, and is intended to be accessible to a wide audience.

1 Reproducing Kernel Hilbert Spaces
There are many different equivalent definitions of a Reproducing Kernel Hilbert Space (RKHS):
in particular, it is possible to begin with a kernel and to construct the associated RKHS, or to
begin with a Hilbert space with certain properties and to “discover” its kernel. We will focus on
the latter viewpoint, and consider a Hilbert space (H, 〈·, ·〉H) of functions X −→ R, where X is
a set without a particular structure. First, we remind in Definition 1 the definition of a Hilbert
space.

Definition 1. A Hilbert space is a vector space H over R equipped with an inner product
〈·, ·〉H that is complete, which is to say that every Cauchy sequence in H converges (for
the topology induce by the norm ‖h‖H :=

√
〈h, h〉H) to an element of H.

A Cauchy sequence is a sequence (hn)n∈N in H such that for every ε > 0, there exists
N ∈ N such that for all m, n ≥ N , we have ‖hn − hm‖H ≤ ε.

For the sake of simplicity, we consider spaces of real-valued functions and Hilbert spaces over
R, but the definitions can be extended to Cd-valued functions and Hilbert spaces over C. Given
a Hilbert space of functions X −→ R, the evaluation map at a point x ∈ X , defined by

δx :=
{

H −→ R
h 7−→ h(x) ∈ L(H,R),

where L(H,R) is the space of linear maps from H to R, is of particular interest in RKHS theory:

Definition 2. A Hilbert space H of functions X −→ R is said to be a Reproducing
Kernel Hilbert Space (RKHS) if the evaluation map δx is continuous for every x ∈ X .
This means that for every x ∈ X , there exists a constant Cx ≥ 0 such that for all h ∈ H,
we have:

|δx(h)| = |h(x)| ≤ Cx‖h‖H .

We can write this condition δx ∈ H ′, where H ′ is the space of continuous linear maps from
H to R (the topological dual of H).

In a RKHS, the norm is “strong” in the sense that convergence in H implies pointwise
convergence of functions. In other words, if a sequence of functions (hn)n∈N ∈ HN is such that
‖hn − h‖H −−−−−→

n−→+∞
0 for some h ∈ H, then for every x ∈ X , we have:

|hn(x) − h(x)| = |δx(hn − h)| ≤ Cx‖hn − h‖H −−−−−→
n−→+∞

0.

A simple example of a RKHS space is the space of “band-limited” functions, which we present
in Example 1.
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Example 1. We consider the space H :=
{

f ∈ C0(R) ∩ L2(R) : supp f̂ ⊂ [−a, a]
}

of con-
tinuous functions f on R verifying

∫
R f2 < +∞ and whose Fourier transform f̂ is supported

in the interval [−a, a]. We equip H with the L2 inner product: 〈f, g〉H :=
∫
R fg. The space

(H, 〈·, ·, 〉)H is an RKHS: we apply Definition 2 and fix x ∈ R and f ∈ H, with the
convention that

f̂ := ω 7−→
1

√
2π

∫
R

f(x)e−iωxdx,

we compute using the Fourier inversion formula, the Cauchy-Schwarz inequality, and the
Parseval identity:

|δx(f)| =
∣∣∣∣∣ 1
√

2π

∫
R

f̂(ω)eiωxdω

∣∣∣∣∣ ≤
1

√
2π

∫ a

−a
|f̂(ω)|dω

≤
1

√
2π

√∫ a

−a
|f̂(ω)|2dω

√∫ a

−a
12dω =

√
a

π

√∫
R

|f̂(ω)|2dω =

√
a

π
‖f‖H .

To define the kernel of an RKHS, we will use a well-known result in Hilbert space theory:

Theorem 1. Riesz Representation Theorem [RAG05, Theorem 13.31] Let (H, 〈·, ·〉H) be a
Hilbert space, for every continuous linear functional ` ∈ H ′, there exists a unique element
R` ∈ H such that for all h ∈ H, we have `(h) = 〈h, R`〉H . The Riesz operator R : H ′ −→ H
is an isometric isomorphisma.

ai.e. ‖R`‖H = ‖`‖H′ := sup‖h‖H ≤1 |`(h)| and R is linear and bijective.

Using Theorem 1, we can define the kernel of an RKHS using the evaluation maps, which
by assumption are continuous:

Definition 3. The kernel of an RKHS H is the map k : X × X −→ R defined by:

k := (x, y) ∈ X 2 7−→ 〈Rδx, Rδy〉H ,

where Rδx, Rδy ∈ H are the Riesz representations of δx, δy as in Theorem 1.

For convenience, the element Rδx ∈ H is often denoted by Kx := Rδx. The map x 7−→ Kx

is called the canonical feature map.Using the properties of the inner product 〈·, ·〉H and of the
Riesz representation, the following properties of the kernel k can be deduced:

Proposition 1. The kernel k : X 2 −→ R of an RKHS H satisfies the following properties
for any x, y ∈ X :

1) Symmetry: k(x, y) = k(y, x).

2) Positivity:

∀n ∈ N∗, ∀x1, · · · , xn ∈ X , ∀a ∈ Rn,
∑
i,j

aik(xi, xj)aj ≥ 0

3) Feature identity: k(·, x) = Kx.

4) Reproducing property: ∀h ∈ H, h(x) = 〈h, Kx〉H .

5) Self-reproducing property: 〈k(·, x), k(·, y)〉H .
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Proof. For 1), we have k(x, y) = 〈Kx, Ky〉H = 〈Ky, Kx〉H = k(y, x). To show 2), we compute:

∑
i,j

aik(xi, xj)aj =
n∑

i=1
ai

〈
Kxi ,

n∑
j=1

ajKxj

〉
H

=
〈

n∑
i=1

aiKxi ,
n∑

j=1
ajKxj

〉
H

=
∥∥∥∥∥

n∑
i=1

aiKxi

∥∥∥∥∥
2

H

≥ 0.

For 3), since Ky = Rδy it holds that Kx(y) = δy(Kx) = 〈Kx, Ky〉H = k(y, x), concluding that
Kx = k(·, x). Regarding 4), we use Kx = Rδx and obtain h(x) = δx(h) = 〈h, Kx〉H . For 5), we
apply 4) to h := Ky.

A natural question is whether a suitable function k : X 2 −→ R can be a reproducing kernel
of an RKHS H. The answer is that the properties 1) and 2) of Proposition 1 are sufficient.
Before stating the result, we introduce a notation for such functions:

Definition 4. A function k : X 2 −→ R is said to be symmetric-positive if it verifies 1)
and 2) of Proposition 1. In that case, we write k ∈ S2(X ).

Theorem 2 (Moore-Aronszajn Theorem [Aro50]). Let k ∈ S2(X ) be a symmetric-positive
function. Then there exists a unique (up to isometry) RKHS (H, 〈·, ·〉H) with kernel k.

The idea of the proof of Theorem 2 is to begin with the space

H0 :=
{

n∑
i=1

aik(·, xi), n ∈ N, a ∈ Rn, (x1, · · · , xn) ∈ X n

}
,

equipped with the inner product:〈
n∑

i=1
aik(·, xi),

m∑
j=1

bjk(·, yj)
〉

H0

=
∑
i,j

aik(xi, yj)bj .

The space (H0, 〈·, ·〉H0) is only a pre-Hilbert space, and the technicality of the proof resides in
studying its Hilbertian completion (limits of Cauchy sequences in H0). A self-sufficient proof
of Theorem 2 can be found in Jean-Philippe Vert’s course notes. Some commonly used kernels
are:

• The Gaussian (or RBF) kernel: k(x, y) := exp(−‖x − y‖2
2/s2)

• The polynomial kernel: k(x, y) := (c + 〈x, y〉2)d

• The Laplace kernel: k(x, y) := exp(−‖x − y‖2/s)

• Radial kernels for some finite positive measure µ on R+ : k(x, y) :=
∫ +∞

0 e−t‖x−y‖2
2dµ(t)

• Taylor kernels for coefficients (an) ∈ RN
+ with sufficient decay: k(x, y) :=

∑+∞
n=0 an〈x, y〉n

2 Kernel Interpolation
In this section, we explain the concept of kernel interpolation, which allows for the approximation
of a function f : X −→ R whose values are known at a finite set of points {x1, . . . , xn} ⊂ X . In
other words, given values (yi) and points (xi), we want to find the simplest possible function of
an RKHS H verifying h(xi) = yi at each i. Again, we focus on the case of a real-valued functions
for simplicity. Mathematically, the goal is to find a solution of the following exact interpolation
problem:

argmin
h∈H

∀i∈J1,nK, h(xi)=yi

‖h‖2
H . (2.1)

Minimising the norm ‖h‖H can be understood as a way of finding the simplest possible function in
H verifying the interpolation conditions. To motivate this intuition, we refer to [CS08, Theorem
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4.48], which states that the norm associated to the RKHS induce by the Gaussian kernel on a
bounded set of Rd dominates all Sobolev norms. In this setting, a small norm implies that the
function is very regular, which corresponds to our intuitive term “simple function”.

Before tackling the problem of Eq. (2.1), we first study the constraints in the case where a
solution exists: we provide a characterisation of the condition that two functions h1, h2 ∈ H be
equal on a finite set of points {x1, . . . , xn}.

Proposition 2. Let (x1, . . . , xn) ∈ X n For any h1, h2 ∈ H, we have:

∀i ∈ J1, nK, h1(xi) = h2(xi) ⇐⇒ h1 − h2 ∈ W ⊥, W := Span (k(·, xi))n
i=1

Proof. By the reproducing property of k (Proposition 1 item 4)), we have for each i ∈ J1, nK:

(h1 − h2)(xi) = 0 ⇐⇒ 〈h1 − h2, k(·, xi)〉H = 0 ⇐⇒ h1 − h2 ∈ k(·, xi)⊥,

concluding the proof by intersecting over i ∈ J1, nK.

Thanks to the characterisation of Proposition 2, we can reformulate the interpolation problem
of Eq. (2.1) as a problem over the coefficients a ∈ Rn of a function h ∈ W . This way, the
infinite-dimensional problem of Eq. (2.1) can be reduced to a finite-dimensional problem over
the coefficients a ∈ Rn of a function h ∈ W .

Theorem 3. Let (x1, . . . , xn) ∈ X n and (y1, . . . , yn) ∈ Rn. Consider the matrix K ∈ Rn×n

of entries Ki,j := k(xi, xj), and assume that K is invertible. Then there is a unique solution
to the exact kernel interpolation problem of Eq. (2.1), which is:

h∗ =
n∑

i=1
aik(·, xi), where a = K−1y, (2.2)

with y := (y1, · · · , yn) ∈ Rn.

Proof. For existence, take a := K−1y and let h0 :=
∑n

i=1 aik(·, xi). Since Ka = y, the function
h0 satisfies the interpolation conditions h0(xi) = yi for all i ∈ J1, nK. Now we see from Proposi-
tion 2 that h ∈ H verifies the constraints if and only if h − h0 ∈ W ⊥, which can be re-written
as h = h0 + h⊥ for some h⊥ ∈ W ⊥. We then have by orthogonality ‖h‖2

H = ‖h0‖2
H + ‖h⊥‖2

H ,
showing that for any h ∈ H verifying the constraints, we have ‖h‖2

H ≥ ‖h0‖2
H , which shows that

h0 is indeed a solution of the interpolation problem Eq. (2.1).
For uniqueness, if h ∈ H verifies the constraints, we have seen that we can write h = h0 +h⊥

for some h⊥ ∈ W ⊥. If h 6∈ W then h⊥ 6= 0 and thus ‖h‖2
H > ‖h0‖2

H , which shows that a solution
h must be in W . Writing such a solution as h =

∑n
i=1 bik(·, xi) for some b ∈ Rn, using the

constraints we observe that Kb = y, which implies that a = b by invertibility, showing that the
expression in Eq. (2.2) is the unique solution.

The condition of invertibility of the matrix K in Theorem 3 is crucial, as it ensures that
the interpolation problem has a unique solution. For some specific kernels, this condition can
be guaranteed for distinct points (xi)n

i=1 (see [Mic86, Theorem 2.3] or [Set22, Theorem 3.5] for
example). In general, it is natural to resort to a regularisation technique, which consists in
replacing the exact interpolation problem Eq. (2.1) by the following approximate interpolation
problem:

argmin
h∈H

λ‖h‖2
H +

n∑
i=1

(h(xi) − yi)2, (2.3)

which we interpret as a kernel regression problem. Using the same tools as in Theorem 3, we
will reduce this problem to optimisation over the coefficients a ∈ Rn of a function h ∈ W :
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Theorem 4. For (x1, . . . , xn) ∈ X n, (y1, . . . , yn) ∈ Rn and λ > 0. A function h ∈ H is
a solution of the kernel regression problem of Eq. (2.3) if and only if it can be written
h =

∑n
i=1 a∗

i k(·, xi) for some a∗ ∈ Rn which is a solution to:

argmin
a∈Rn

λa>Ka + ‖Ka − y‖2
2, (2.4)

where K ∈ Rn×n is the matrix of entries Ki,j := k(xi, xj) and y := (y1, . . . , yn) ∈ Rn. A
vector a ∈ Rn is a solution of Eq. (2.4) if and only if it verifies:

K ((K + λI)a − y) = 0. (2.5)

Proof. We begin with the second statement about solutions of Eq. (2.4). By the symmetry and
positivity properties of k (Proposition 1 items 1) and 2)), the matrix K is symmetric positive
semi-definite, and thus the energy J := a 7−→ λa>Ka + ‖Ka − y‖2

2 is convex. Furthermore,
it is differentiable and we compute ∇J(a) = 2λKa + 2K(Ka − y), and Eq. (2.5) is equivalent
to the condition ∇J(a) = 0. Since K is symmetric positive semi-definite, the matrix K + λI
is symmetric positive definite thanks to the assumption λ > 0, and thus the the vector a0 :=
(K + λI)−1y is a solution of Eq. (2.4).

Now we consider the element h0 :=
∑n

i=1 a
(0)
i k(·, xi) ∈ W . For any h ∈ H, take its orthogonal

projection hW := PW (h) onto W (using the closedness and convexity of W and the Hilbert
projection Theorem ([Rud87, Theorem 4.11])). We have ‖hW ‖H ≤ ‖h‖H and since h−hW ∈ W ⊥,
we deduce from Proposition 2 that hW (xi) = h(xi) for all i ∈ J1, nK. This shows that hW has
lower cost than h in the kernel regression problem:

λ‖hW ‖2
H +

n∑
i=1

(hW (xi) − yi)2 ≤ λ‖h‖2
H +

n∑
i=1

(h(xi) − yi)2,

with a strict inequality if h 6∈ W , and thus if a solution of the kernel regression problem exists,
it must be in W . Given the definition of W , we conclude that h ∈ H is a solution of Eq. (2.3)
if and only if it is in W and is a solution of Eq. (2.3), which is equivalent to being of the form
h =

∑n
i=1 aik(·, xi) for some a ∈ Rn solution of Eq. (2.4), concluding the proof.

3 Kernel Mean Embedding and Maximum Mean Discrepancy
A cornerstone application of RKHS theory in Machine Learning is the Kernel Mean Embedding
(KME), which embeds a probability measure µ into an RKHS H. The norm of of the difference
between two embeddings is then a measure of discrepancy between the two measures, which is
called the Maximum Mean Discrepancy (MMD) [Gre+06; Smo+07; Mua+17]. In this section,
we provide a simple definition of the KME without the use of Bochner integrals (see [Hyt+16,
Section 1.2.a], or [CS08, Appendix A.5.4] for references on this notion). We begin with a technical
lemma that will allow us to define the KME. Given a measurable space X , we say that a kernel
k : X 2 −→ R is measurable if for every x ∈ X , the function k(·, x) : X −→ R is measurable. We
will write Pk(X ) the set of probability measures µ on X such that

∫
X

√
k(x, x)µ(dx) < +∞.

Lemma 1. Let (H, 〈·, ·〉H) be a RKHS with a measurable kernel k. Let µ ∈ Pk(X ), then
the linear map defined by:

`µ :=
{

H −→ R
h 7−→

∫
X hdµ

(3.1)

is continuous.

Proof. First, we show that `µ is well-defined. Thanks to the Moore-Aronszajn Theorem, we
can write any h ∈ H as a limit (in H and in particular pointwise) of functions hn ∈ H of the
form hn =

∑mn
i=1 a

(n)
i k(·, x

(n)
i ), and thus h is measurable (see [CS08, Lemma 4.24] for additional

details).
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We now show that for any h ∈ H, we have h ∈ L1(µ), using the reproducing property
(Proposition 1 item 4)), the Cauchy-Schwarz inequality and the assumption µ ∈ Pk(X ):∫

X
|h(x)|dµ(x) =

∫
X

|〈h, k(·, x)〉H |dµ(x)

≤
∫

X
‖h‖H‖k(·, x)‖Hdµ(x)

= ‖h‖H

∫
X

√
k(x, x)dµ(x) < +∞. (3.2)

The left hand-side term exists in R+ ∪ {+∞} by measurability, and the computations above
show that it is finite. Thus, `µ is well-defined, and by linearity of integration, it is clearly
linear. We now show continuity using Eq. (3.2), which yields that for every h ∈ H, we have
|`µ(h)| ≤ ‖h‖H

∫
X

√
k(x, x)dµ(x), which proves (Lipschitz) continuity.

Thanks to Lemma 1, we can define the Kernel Mean Embedding of a probability measure µ
as the Riesz representation of `µ.

Definition 5. Let (H, 〈·, ·〉H) be an RKHS with a measurable kernel k, and let µ ∈ Pk(X ).
The Kernel Mean Embedding of µ is the element of H defined by: M(µ) := R`µ ∈ H, where
R is the Riesz representation operator and `µ ∈ H ′ is defined in Eq. (3.1).

The KME allows comparison of two probability measures using the norm of the difference
of their embeddings in H:

Definition 6. Let (H, 〈·, ·〉H) be an RKHS with a measurable kernel k and µ, ν ∈ Pk(X ).
The Maximum Mean Discrepancy (MMD) between µ and ν is defined as:

MMD(µ, ν) := ‖M(µ) − M(ν)‖H . (3.3)

We can rewrite the MMD as an Integral Probability Metric [Mül97]:

Proposition 3. For probability measures µ, ν ∈ Pk(X ), we have:

MMD(µ, ν) = sup
h∈H,‖h‖H≤1

∫
X

h(x)dµ(x) −
∫

X
h(x)dν(x). (3.4)

Proof. By definition of the KME, we have:

sup
h∈H,‖h‖H≤1

∫
X

h(x)dµ(x) −
∫

X
h(x)dν(x) = sup

h∈H,‖h‖H≤1
〈h, M(µ) − M(ν)〉H ,

and the supremum of the right hand-side is attained for h∗ = M(µ)−M(ν)
‖M(µ)−M(ν)‖H

, called the “witness
function” of the MMD. We then compute:

〈h∗, M(µ) − M(ν)〉H = ‖M(µ) − M(ν)‖H = MMD(µ, ν),

concluding the proof.

It is clear that the MMD verifies the non-negativity, symmetry and triangle inequality axioms
for a distance, and that if µ = ν then MMD(µ, ν) = 0. The converse is not true in general, and
is seen in literature as a property of the kernel k used to define the MMD (see [Sri+10; SFL11]):

Definition 7. A measurable kernel k is said to be characteristic if for any µ, ν ∈ Pk(X ),
we have MMD(µ, ν) = 0 if and only if µ = ν (for the MMD associated to k).
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We now focus on the case of discrete measures and take µ :=
∑n

i=1 aiδxi ∈ Pk(X ). By
linearity of the Riesz operator we have:

M(µ) = R`µ =
n∑

i=1
aiR`δxi

=
n∑

i=1
aiR (h 7−→ h(xi)) =

n∑
i=1

aik(·, xi),

where we used Proposition 1 item 3). Given now two empirical probability measures µ :=∑n
i=1 aiδxi , ν :=

∑m
j=1 bjδyj ∈ Pk(X ), we have by the self-reproducing property (Proposition 1

item 5)):

MMD2(µ, ν) = ‖M(µ) − M(ν)‖2
H

=
〈

n∑
i=1

aik(·, xi) −
n∑

j=1
bjk(·, yj),

n∑
i′=1

ai′k(·, xi′) −
n∑

j′=1
bj′k(·, yj′)

〉
H

=
n∑

i=1

n∑
i′=1

aik(xi, xi′)ai′ − 2
n∑

i=1

m∑
j=1

aik(xi, yj)bj +
m∑

j=1

m∑
j′=1

bjk(yj , yj′)bj′ .

Writing the vectors a := (a1, · · · , an) ∈ Rn b := (b1, · · · , bm) ∈ Rm and the matrices Kxx :=
[k(xi, xi′)]i,i′ ∈ Rn×n, Kxy := [k(xi, yj)]i,j ∈ Rn×m and Kyy :=

[
k(yj , yj′)

]
j,j′ ∈ Rm×m, we can

rewrite the MMD as:

MMD2(µ, ν) = a>Kxxa − 2a>Kxyb + b>Kyyb.
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