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1 Abstract

This work is the continuation of a previous article [11] by Julie Delon, Nathaël Gozlan, and Alexan-
dre Saint-Dizier, which considers a generalised version of Wasserstein Barycentres - the latter were
introduced by Martial Agueh and Guillaume Carlier [3]. Our objective is to further investigate the
properties of this generalised Wassertein Barycentre, to develop numerical solvers adapted to this new
problem, and finally to introduce further generalisations.

To this end, we begin by reminding the context of generalised Wasserstein Barycentres in Section 2,
as well as introduce the notations for this report, and provide some first visual experiments for our
considered problems.

In Section 3, we introduce multiple numerical solvers for the generalised barycentre problem, which can
be accessed at our project’s repository. Note that the gradient-descent based solver is an adaptation
of the free_support_barycentre method [9] that we made available in POT [14]. The other solvers
will also come to POT shortly.

Having noticed the connexions between Sliced Optimal Transport and generalised Wasserstein Barycen-
tres in the case of projections onto lines, we considered a specific sub-problem of the GWB problem,
the Reconstruction Problem. In this setting, computing a barycentre amounts to finding a reconstruc-
tion of a measure based on its projections by linear maps. In Section 4, we study this reconstruction,
problem and deduce some properties of generalised Wasserstein Barycentres and the Sliced Wasserstein
distance in particular cases.

Finally, in Section 5, we introduce a further generalisation of GWB where the linear maps Pi are no
longer inputs but unknown variables. We provide a summary analysis of the new difficulties of this
problem and provide numerical solvers.
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2 Introduction to Generalised Wasserstein Barycentres

2.1 Notations

• We denote P2(Rk) the set of Radon measures on Rk admitting a second-order moment.

• Σn will denote the n-dimensional simplex: Σn :=
{
a ∈ Rn+ :

n∑
i=1

ai = 1
}

.

• We consider p probability measures ν1 · · · , νp respectively in P(Rd1) · · · P(Rdp), as well as p
weights λ = (λ1, · · · , λp)T such that λ ∈ Σp. In general we will assume that the λi ̸= 0.

• Let Π(ν1, . . . νp) the subset of measures in P2(Rd1 × · · · × Rdp) with marginals ν1, . . . νp.

• The push-forward measure of T : Rd → Rk on a measure µ on Rd is defined such that for all
borelians B ⊂ Rk, T#µ(B) = µ(T ◦−(B)), where T ◦−(B) is the reciprocal image of B by the
map T .

• In general, the index i will denote the i-th measure within the p input measures used to compute
a barycentre.

• Mm,n(Ω) will denote the set of m× n matrices with entries in Ω.

• Sd(R), S+
d (R), S++

d (R) are respectively the symmetric, positive semi-definite and positive d× d
matrices with real-valued entries.

• 1 will be a vector full of ones and Sd the unit sphere for ∥ · ∥2 in Rd.

• Sn will denote the group of permutations of J1, nK.

• E and V denote respectively the expectancy and variance of a random variable (provided they
exist).

2.2 Reminders on Wasserstein Barycentres

Definition 2.2.1 — Wasserstein Distance [17]

The 2-Wasserstein distance between two measures ν1, ν2 ∈ P2(Rd) is:

W2
2(ν1, ν2) := inf

π∈Π(ν1,ν2)

ˆ

Rd×Rd

∥x1 − x2∥2dπ(x1, x2). (1)

The classical barycentre, as introduced in [8] then [3], is defined between measures in Rd (di = d here):

Definition 2.2.2 — Wasserstein Barycentre [3]

Given p points in Rd, let Bλ(x1, · · · , xp) :=
p∑
i=1

λixi = argmin
y∈Rd

p∑
i=1

λi∥xi − y∥2 (2).

The Wasserstein Barycentre problem is a Fréchet barycentre for W2
2:

argmin
ν∈P2(Rd)

p∑
i=1

λiW2
2(νi, ν). (WB)
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Definition 2.2.3 — Multi-Marginal Wasserstein Barycentre [3]

Given ν1, · · · , νp ∈ P2(Rd), we call MMWB of ν1, · · · , νp any solution of:

argmin
π∈Π(ν1,··· ,νp)

ˆ

Rd×···×Rd

p∑
i=1
∥xi −Bλ(x1, · · · , xp)∥2dπ(x1, · · · , xp). (MMWB)

As proven in [3], both formulations are equivalent:

Theorem 2.2.4 — WB-MMWB correspondence [3]

If π∗ is a solution of (MMWB), then ν∗ := Bλ#π∗ is a solution of (WB).

If at least one of the measures νi admits a density with respect to the Lebesgue measure, then
both problems (WB) and (MMWB) have a unique solution.

2.3 The Generalised Barycentre Problem

Returning to the general case, given p linear applications Pi ∈ Md,di
(R), we present the generalised

barycentre problem [11].

Let A :=
p∑
i=1

λiP
T
i Pi which we assume invertible (thus symmetric positive definite).

Problem 2.3.1 — Generalised Barycentre [11]

Given p points xi ∈ Rdi , their generalised barycentre is

BP,λ(x1, · · · , xp) = argmin
x∈Rd

p∑
i=1

λi∥Pix− xi∥2 = A−1
( p∑
i=1

λiP
T
i xi

)
. (3)

Let F :


P2(Rd) −→ R

γ 7−→
p∑
i=1

λiW2
2(νi, Pi#γ) ,

we call GWB of ν1, · · · , νp with weights λ1, · · · , λp any solution of the problem:

inf
γ∈P2(Rd)

F (γ). (GWB)

As proven by [11] §3.1, (GWB) can be re-written as a (WB)-type problem:

Theorem 2.3.2 — GWB reformulation [11]

Let for i ∈ J1, pK, ν̃i := (A−1/2P Ti )#νi and G :


P2(Rd) −→ R

µ 7−→
p∑
i=1

λiW2
2(ν̃i, µ) .

There exists a constant C ∈ R such that for a given γ ∈ P2(Rd) and µ := A1/2#γ, we have
F (γ) = G(µ) + C, yielding an equivalent formulation of (GWB):

inf
µ∈P2(Rd)

p∑
i=1

λiW2
2(ν̃i, µ). (GWB’)

This reformulation amounts to a classical Wasserstein barycentre problem, which always admits a
solution [3]. If the measures νi admit a density, then we do not have unicity, however if γ1 and γ2 are
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solutions of (GWB) then ∀i ∈ J1, pK, Pi#γ1 = Pi#γ2 [11].
Note that in the discrete case, we do not have unicity for the classical or generalised versions of the
Wasserstein barycentre.

Problem 2.3.3 — Multi-marginal formulation [11]

Like the classical barycentre problem, (GWB) can be re-written as a multi-marginal problem:

argmin
π∈Π(ν1,··· ,νp)

ˆ

Rd1 ×···×Rdp

p∑
i=1

λi∥xi − PiBP,λ(x1, · · · , xp)∥2dπ(x1, · · · , xp). (MMGWB)

π∗ is a solution of (MMGWB) iif γ∗ := BP,λ#π∗ is a solution of (GWB).

Again this problem can be re-written as a multi-marginal classical barycentre problem:

argmin
π∈Π(ν̃1,··· ,ν̃p)

ˆ

Rd1 ×···×Rdp

p∑
i=1

λi∥xi −Bλ(x1, · · · , xp)∥2dπ(x1, · · · , xp). (MMGWB’)

π∗ is a solution of (MMGWB’) iif γ∗ := A−1/2Bλ#π∗ is a solution of (GWB).

2.4 Examples

2.4.1 GWB between two measures

We consider two discrete 2D measures α and β which respectively draw an H and an O. We also
consider the projections (which can be visualised as projecting onto two vertical sides of a cube):

P1 =
(

1 0 0
0 1 0

)
, P2 =

(
0 1 0
0 0 1

)
.

In order to compute the barycentre, we reformulate the generalised barycentre problem as a classical
barycentre problem. We let A = λ1P

T
1 P1 + λ2P

T
2 P2 and α̃ = (A−1/2P T1 )#α, β̃ = (A−1/2P T2 )#β.

The Generalised Barycentre Problem can be written as the following equivalent barycentre problem:

(GWB′) : inf
µ∈P2(R3)

λ1W2
2(α̃, µ) + λ2W2

2(β̃, µ).

Consider X,Y the respective supports of α̃, β̃. Now we need to compute the barycentres between the

two uniform measures α̃ =
n∑
i=1

1
n
δxi and β̃ =

m∑
j=1

1
m
δyj .

We compute π, the OT matrix solution to the discrete Kantorovitch problem:

argmin
π∈Mn,m(R)

n∑
i=1

m∑
j=1

πij∥xi − yj∥2, π1 = 1
n

1, πT1 = 1
m

1, π ≥ 0

This can be done using ot.emd [14], from the Python OT library POT.

The associated transport plan is µ∗ =
n∑
i=1

m∑
j=1

πi,jδxi ⊗ δyj .

Let Pt(x, y) := (1−t)x+ty. Finally, the (1−t), t weighted barycentre is Pt#µ∗ =
n∑
i=1

m∑
j=1

πi,jδ(1−t)xi+tyj
.

Then our final desired transport plan is γ∗ = A−1/2#µ∗.

Now if we compare α with P1#µ∗ and β with P2#µ∗, the matching isn’t perfect since the two measures
α, β are not compatible, as shown on Figure 1.
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Figure 1: GWB resolution on a toy dataset with two 2D input measures.

2.4.2 GWB between three measures

We load 3 different logos as discrete measures and display them in the coupling space Rd = R3.

Each logo is seen as a discrete uniform measure νi =
ni∑
j=1

a
(i)
j δx(i)

j

on R2 where a(i)
j = 1/ni, and we

consider the Pi : R3 → R2 to be projections onto 3 faces of a cube.
Like the 2-measure example, we re-formulate the GWB problem as a Wasserstein Barycentre problem:

(GWB′) : inf
µ∈P2(R3)

3∑
i=1

λiW2
2(ν̃i, µ),

where the wanted optimal coupling is obtained using γ∗ = A−1/2#µ∗, and we let for i ∈ [[1, 3]], ν̃i :=
(A−1/2P Ti )#νi. First, we solve this problem using the "free support barycentre" method [9] using
ot.lp.free_support_barycenter [14], which optimises a fixed number of baycentre positions and
leaves the barycentre weights as uniform throughout, as seen in Figure 2.

Figure 2: (GWB) resolution on a toy dataset with three 2D input measures.
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Another way of solving this problem is the Multi-Marginal formulation:

(MMGWB′) : argmin
π∈Π(a(1),a(2),a(3))

∑
j1,j2,j3

cj1,j2,j3πj1,j2,j3 ,

where:

• Π(a(1), a(2), a(3)) is the set of tensors of Rn1×n2×n3
+ with marginals a(i).

• The cost is cj1,j2,j3 =
3∑
i=1

λi
∥∥∥xji −Bλ (x(1)

j1
, x

(2)
j2
, x

(3)
j3

)∥∥∥2
.

• Bλ(x1, x2, x3) := λ1x1 + λ2x2 + λ3x3 is the euclidian barycentre.

The associated measure is π :=
∑

j1,j2,j3

πj1,j2,j3δx(1)
j1
⊗ δ

x
(2)
j2
⊗ δ

x
(3)
j3

and γ∗ = A−1/2Bλ#π∗ solves (GWB).

While very elegant mathematically, this method is prohibitively expensive in practice. Indeed, the
multi-marginal problem is more general than the barycentre problem which is already extremely
expensive [4].
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3 Numerical Optimisation for GWB

3.1 Abstract Algorithms

In order to solve our problem (GWB), we consider different classical non-convex problems solvers.

We will present the algorithms in the following framework: minimising f(x1, · · · , xn) for (x1, · · ·xn) ∈
X1 × · · · × Xp, where each Xi is a (convex) subset of Rdi . Let ΠXi the orthogonal projection onto
Xi ⊂ Rdi .

Algorithm 1: Projected Alternated Gradient Descent
Data: Number of steps N , precision ε, learning rate η, l.r. decay ρ.

Result: (x1, · · · , xn) ∈ X1 × · · · ×Xn minimising f .
1 Initialisation: Draw ∀i ∈ J1, nK, draw x

(0)
i ∈ Xi;

2 for t ∈ J1, NK do

3 ∀i ∈ J1, nK, x(t)
i = ΠXi

(
x

(t−1)
i − ρtη

∂f

∂xi

(
x

(t−1)
1 , · · · , x(t−1)

n

))
;

4 if f
(
x

(t−1)
1 , · · · , x(t−1)

n

)
− f

(
x

(t)
1 , · · · , x(t)

n

)
< ε then

5 Declare convergence and terminate.
6 end
7 end

An important variant is Algorithm 1’s stochastic counterpart, where the indices i are chosen at random
in batches of B following a discrete distribution D on J1, nK.

Algorithm 2: Stochastic Projected Alternated Gradient Descent
Data: Number of steps N , precision ε, learning rate η, l.r. decay ρ,

batch size B and sample law D.

Result: (x1, · · · , xn) ∈ X1 × · · · ×Xn minimising f .
1 Initialisation: Draw ∀i ∈ J1, nK, draw x

(0)
i ∈ Xi;

2 for t ∈ J1, NK do
3 for _ ∈ J1, BK do
4 Draw i ∼ D and step:

x
(t)
i = ΠXi

(
x

(t−1)
i − ρtη

∂f

∂xi

(
x

(t−1)
1 , · · · , x(t−1)

n

))
;

5 end
6 if f

(
x

(t−1)
1 , · · · , x(t−1)

n

)
− f

(
x

(t)
1 , · · · , x(t)

n

)
< ε then

7 Declare convergence and terminate.
8 end
9 end

Another classical solver is Block Coordinate Descent, which consists in optimising formally parameter
by parameter, assuming that closed forms are known for the partial optimisations:

8
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Algorithm 3: Block Coordinate Descent
Data: Number of steps N , precision ε

Result: (x1, · · · , xn) ∈ X1 × · · · ×Xn minimising f .
1 Initialisation: Draw ∀i ∈ J1, nK, draw x

(0)
i ∈ Xi;

2 for t ∈ J1, NK do
3 ∀i ∈ J1, nK, x(t)

i = argmin
xi∈Xi

f
(
x

(t−1)
1 , · · · , x(t−1)

i−1 , xi, x
(t−1)
i+1 , · · · , x(t−1)

n

)
;

4 if f
(
x

(t−1)
1 , · · · , x(t−1)

n

)
− f

(
x

(t)
1 , · · · , x(t)

n

)
< ε then

5 Declare convergence and terminate.
6 end
7 end

For the stopping condition, it is also typical to use a stationarity criterion, for example:∥∥∥(x(t−1)
1 , · · · , x(t−1)

n

)
−
(
x

(t)
1 , · · · , x(t)

n

)∥∥∥ < ε

This condition is more natural for BCD than for GD and SGD, since BCD does not inherently require
a computation of the energy f at each step.

3.2 Solving GWB with Gradient Descent

The idea is to solve the problem (GWB) by gradient descent (Algorithm 1 or Algorithm 2) on γ, where
an arbitrary fixed number of points is considered.

We look for solutions γ =
L∑
l=1

blδyl
, where L is fixed and b ∈ ΣL the simplex. This type of solution is

similar to [9], which solves usual barycentres with gradient descent.

Let i ∈ J1, pK and consider the discrete formulation of Ji := W2
2(νi, Pi#γ). For legibility we will

temporarily drop the i indices. The computation of J is a Discrete Kantorovitch problem.

Writing ν =
K∑
k=1

akδxk
, P#γ =

L∑
l=1

blδPyl
, Mk,l := ∥xk − Pyl∥22 :

J = min
π∈MK,L(R+)

π1=a
πT 1=b

M · π = max
f∈RK , g∈RL

f⊕g≤M

f · a+ g · b, (DK)

where f⊕g = (fl+gk)(l,k)∈J1,KK×J1,LK and where the second equality is obtained through strong duality
(in this admissible linear program), refer to [17] for details.

We are trying to compute the gradients of J = J(b, Y ), where Y = (y1, · · · , yL)T . Note that this can
be done via automatic differentiation, but it is important to consider the computations in order to
understand the process.

9



Generalised Wasserstein Barycentres Eloi 2022

3.2.1 Discussion on applying Shapiro’s Theorem

We reproduce "Shapiro’s Theorem" from [6]1 for the sake of self-containedness:

Theorem 3.2.1 — Shapiro’s Theorem [6]

Let X a metric space, U a normed space and f : X × U → R such that:

• ∀x ∈ X, f(x, ·) is differentiable.

• f(·, ·) and the partial derivative ∂uf(·, ·) are both continuous

Let K ⊂ X compact and consider the optimum value v(u) := sup
x∈K

f(x, u). We have:

• v is directionally differentiable

• If for u0 ∈ U, f(·, u0) has a unique minimiser x0 on K then v is differentiable at u0,
with dv(u0) = ∂uf(x0, u0) (4)

• In general Dhv(u0) = max
x∈M(u0)

∂uf(x, u0) · h (5) where M(u0) = sup
x∈K

f(x, u0).

In the case of (DK) problem, let us check the hypotheses for the variables yl, Pi, b:

• For the yl, consider the primal problem J(Y ) = min
π∈MK,L(R+)

π1=a
πT 1=b

M ·π, where Y :=


— (y1)T —
—

... —
— (yL)T —

.

For π ∈ Π(a, b), let F (π, Y ) := M.π Since Mk,l = ∥xk − Pyl∥22, the map Y 7→ F (π, Y ) is
differentiable (quadratic) and both maps F (·, ·) and ∂Y F (·, ·) are continuous (polynomial).

Now we need to restrict π to a compact set. To that end, we can notice that each π ∈ Π(a, b)
satisfies ∥π∥1 ≤ 1 (∥A∥1 denoting here

∑
k,l

|Ak,l|) since each πk,l ≥ 0 and
∑
k,l

πk,l =
∑
k

(π1)k =

∑
k

(a)k = 1. Thus Π(a, b) is closed and bounded in a finite-dimensional space, thus compact.

• For b, we can directly use the sub-differentiability of α 7→W2
2(α, β), as is proven in detail in [18]

§7.2.2, Proposition 7.17, which shows the desired result that a sub-gradient in b is given by an
optimal dual potential for b.

Another difficulty is that we would want to apply the second point, which requires unicity. In theory,
unicity is not guaranteed for a linear program such as (DK), and a possible counter example would
be the following (Figure 3, from [17]), where the two possible transport plans are both optimal:

1While [6] is generally cited, the original theorem is from [10] and proofs can be found in [5].
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Figure 3: Example with two solutions to the (DK) problem.

In practice, there are several ways of dealing with this theoretical hurdle:

• One could apply the third point and compute the gradient as the maximum of all the found
solutions (assuming there is a finite amount of them);

• One could replace (DK) problem with its Sinkhorn regularised version (see [17], §4.2), which is
strictly convex, thus has unicity. This would be at the cost of the sparsity and exactitude of
(DK) solution, but would provide the speed and stability advantages of Sinkhorn;

• If we keep an optimal solution instead of computing the maximum over optima, we obtain a
sub-gradient (3.2.1, (3)) and can proceed with (projected) sub-gradient descent.

3.2.2 Gradient in b

Since ∇b(f · a+ g · b) = g, by applying Santambrogio Proposition 7.17 [18] we obtain ∇bJ = g∗ where
(f∗, g∗) is a dual solution of (DK).

This allows optimisation on b using projected GD: bt+1 = ΠΣL
(bt − η∇bJ(Pt, bt, Yt)) ,

where ΠΣL
(v) is the projection on the simplex, computing argmin

u∈RL
+

u.1=1

∥u− v∥2.

3.2.3 Gradient in M

Before computing the gradient in Y we need the gradient in M .

Using the primal formulation and Shapiro’s theorem 3.2.1 we obtain ∇MJ = π∗, where π∗ is an
optimal transport matrix for the (DK) problem.

3.2.4 Gradient in Y

We use mixed convention, where for (l, β) ∈ J1, LK× J1, dK,
∂J

∂M
and

∂M

∂Yl,β
have the shape (L, d).

Using the chain rule2 we can compute for (l, β) ∈ J1, LK× J1, dK,
∂J

∂Yl,β
= Tr

[ ∂J
∂M

]T
∂M

∂Yl,β

 ,

where we compute
∂M

∂Yl,β
using

∂Mk,l

∂yl′
= δl,l′

(
−2P Txk + 2P TPyl

)
(quadratic form in yl).

2See The Matrix Cookbook [16], §2.8.1 (126)
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3.2.5 GD for GWB Algorithm

We present our GD solver for the (GWB) problem. Note that technically, the method is Projected
Alternated Gradient Descent.

Algorithm 4: (GWB) resolution with Gradient Descent

Data: Input measure points (Xi)i∈J1,pK ∈
p∏
i=1
MKi,di(R), weights (ai)i∈J1,pK ∈

p∏
i=1

ΣKi ,

linear maps (Pi)i∈J1,pK ∈
p∏
i=1

Rdi , number of barycentre points L,

barycentric coefficients λ ∈ Σp, precision ε, iterations N , l.r. η and l.r. decay ρ.

Result: Barycentre positions Y ∈ML,d(R) and barycentre weights b ∈ ΣL.
1 Initialisation: Draw Y ∈ML,d(R) and b ∈ ΣL; let J0 := +∞;
2 for t ∈ J1, NK do
3 for i ∈ J1, pK do
4 Compute J (i) = min

πi∈Π(ai,b)
Mi · πi where M (i)

k,l = ∥x(i)
k − Piyl∥22

5 end

6 Compute the loss Jt =
p∑
i=1

λiJ
(i) and its gradients w.r.t. Y, b;

7 Step the positions Y : Y ← Y − ρtη
∂Jt

∂Y
;

8 Step the weights b : b← ΠΣL

(
b− ρtη

∂Jt

∂b

)
;

9 if Jt−1 − Jt < ε then
10 Declare convergence and terminate.
11 end
12 end

The computation of the gradients at line 6 is facilitated by the use of the PyTorch back-end. Then the
gradients of the Discrete Kantorovitch problem (DK) with respect to the distance matrix M and the
weights b are computed by the ot.emd2 function from Python OT [14]. PyTorch’s autograd framework
then computes automatically our desired gradients, thanks to the seemless backend integration done
by the POT team.

3.2.6 SGD for BGWB Algorithm

Below is a stochastic variant of the GD solver for BGWB (Algorithm 8), which is technically Stochastic
Projected Alternated Gradient Descent.

The modification is that instead of computing the complete loss J at every step, the loss is computed
using p samples of a discrete probability distribution D such that ∀i ∈ J1, pK, D(i) = λi.

12
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Algorithm 5: (GWB) resolution with Stochastic Gradient Descent

Data: Input measure points (Xi)i∈J1,pK ∈
p∏
i=1
MKi,di(R), weights (ai)i∈J1,pK ∈

p∏
i=1

ΣKi ,

linear maps (Pi)i∈J1,pK ∈
p∏
i=1

Rdi , number of barycentre points L,

barycentric coefficients λ ∈ Σp, precision ε, iterations N , l.r. η and l.r. decay ρ.

Result: Barycentre positions Y ∈ML,d(R) and barycentre weights b ∈ ΣL.
1 Initialisation: Draw Y ∈ML,d(R) and b ∈ ΣL; let J0 := +∞;
2 for t ∈ J1, NK do
3 for _ ∈ J1, pK do
4 Draw i ∼ D;
5 Compute J (i) = min

πi∈Π(ai,b)
Mi · πi where M (i)

k,l = ∥x(i)
k − Piyl∥22

6 end

7 Compute the loss Jt =
p∑
i=1

J (i) and its gradients w.r.t. Y, b;

8 Step the positions Y : Y ← Y − ρtη
∂Jt

∂Y
;

9 Step the weights b : b← ΠΣL

(
b− ρtη

∂Jt

∂b

)
;

10 if Jt−1 − Jt < ε then
11 Declare convergence and terminate.
12 end
13 end

Note that the SGD steps are done by batches of p, this allows better comparability to GD (Algorithm
4), in particular concerning the stopping criterion, which in the case of SGD consists in the average
loss on the batch.

3.3 Solving GWB with Block Coordinate Descent

First of all let us define some notations. The matrices indexed in i (corresponding to the p input
measures) will be denoted with an exponent (i) if we need to consider their entries.

We consider νi =
Ki∑
k=1

a
(i)
k δx(i)

k

, γ =
L∑
l=1

blδyl
, where bl is fixed (in practice bl = 1

L is common).

Note that if we wanted to optimise in b, we could leverage 2.1.2 and do so by gradient descent, using
the dual solution of the aforementioned (DK) problem in π. Sadly, there is no known closed form in
b and thus no BCD optimisation in b.

This time we view the problem as minimising an energy J(Y, , (π(i))) of variables Y ∈ ML,d(R) and
πi ∈ Πi :=

{
π ∈MKi,L(R+) : π1 = ai, π

T1 = b
}

.

We define the energy J using the DK cost J =
p∑
i=1

λiMi · πi =
p∑
i=1

λi
∑

(k,l)∈J1,KiK×J1,LK

∥x(i)
k − Piyl∥

2
2π

(i)
k,l.

We will be optimising on each variable successively and independently, which leads us to computing
the optimal values in closed form when possible.

In order to express the closed forms in matrix format, we define:

13
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• For i ∈ J1, pK, the matrix of the Ki points of νi : Xi :=


—

(
x

(i)
1

)T
—

—
... —

—
(
x

(i)
Ki

)T
—

 ∈MKi,di
(R)

• The coupling measure points Y :=


— (y1)T —
—

... —
— (yL)T —

 ∈ML,d(R)

3.3.1 Closed form in Y

The structure of the problem allows us to optimise on each yl separately. Let l ∈ J1, LK, we minimise
the quadratic form:

J ′(yl) :=
p∑
i=1

λi

Ki∑
k=1
∥x(i)

k − Piyl∥
2
2π

(i)
k,l.

By expanding the norm, we compute the gradient ∇yl
J ′ =

p∑
i=1

λi

Ki∑
k=1

π
(i)
k,l

(
−2P Ti x

(i)
k + P Ti Piyl

)
.

The minimising condition for the convex function J ′ then reads: p∑
i=1

λi

Ki∑
k=1

π
(i)
k,lP

T
i Pi

 yl =
p∑
i=1

λi

Ki∑
k=1

π
(i)
k,lP

T
i x

(i)
k .

Which can be written Blyl = cl, where due to the positivity of the coefficients λiπ(i)
k,l, the positive

semi-definite matrix Bl is invertible iif
p∑
i=1

Im(Pi) = Rd, which is a very weak assumption (see 4.1.5).

Finally we have a unique solution:

y∗
l =

 p∑
i=1

λi

Ki∑
k=1

π
(i)
k,lP

T
i Pi

−1 p∑
i=1

λi

Ki∑
k=1

π
(i)
k,lP

T
i x

(i)
k

 . (6)

This expression can be expressed in matrix form with:

• cl =
p∑
i=1

λi
(
π

(i)
·,l

)T
XiPi ∈ Rd, where π(i)

·,l is the l-th column of πi.

• Bl =
p∑
i=1

λiblP
T
i Pi, using

Ki∑
k=1

π
(i)
k,l = bl since πi ∈ Π(ai, b).

3.3.2 Minimising in π

Taking the πi one at a time, minimising in π boils down to solving p (DK) problems.

3.3.3 Stoppping Criterion

We first considered the following early stopping criterion:

1
L

L∑
l=1
∥y(t)
l − y

(t+1)
l ∥2 < ε.

Where the (t) exponent denotes the value at iteration t during the BCD algorithm.

14
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This method, similar to [9], stops the iterations when the barycentre positions can be considered a
fixed point of the BCD iterator, which ensures that the current parameters constitute a local optimum.

However, in order to be a little more comparable to SGD and GD, we also experimented with a
stopping criterion based on the energy to minimise:

Jt − Jt+1 < ε

This adopted method has the disadvantage of requiring the computation of J at every step, which is
not required in the BCD algorithm.

3.3.4 BCD for GWB Algorithm

Now that we have computed the closed forms explicitly, we can formulate a BCD algorithm:

Algorithm 6: (GWB) resolution with Block-Coordinate Descent

Data: Input measure points (Xi)i∈J1,pK ∈
p∏
i=1
MKi,di(R) and weights (ai)i∈J1,pK ∈

p∏
i=1

ΣKi

Barycentre weights b ∈ ΣL, linear maps (Pi)i∈J1,pK ∈
p∏
i=1

Rdi .

barycentric coefficients λ ∈ Σp, precision ε, iterations N .

Result: Barycentre positions Y ∈ML,d(R)
1 Initialisation: Draw Y ∈ML,d(R) and let J0 := +∞;
2 for t ∈ J1, NK do
3 for i ∈ J1, pK do
4 Compute the OT distance matrix M (i)

k,l = ∥x(i)
k − Piyl∥22;

5 Compute the OT map πi by solving min
πi∈Π(ai,b)

Mi · πi;

6 end
7 for l ∈ J1, LK do

8 Update yl: compute yl =
( p∑
i=1

λiblP
T
i Pi

)−1( p∑
i=1

λi
(
π

(i)
·,l

)T
XiPi

)
;

9 end

10 Compute the energy Jt =
p∑
i=1

λiMi · πi;

11 if Jt−1 − Jt < ε then
12 Declare convergence and terminate.
13 end
14 end

Note that the optimisation in the πi is done first in order to avoid initialising them. Furthermore, one
may consider a slight modification where the indices i ∈ J1, rK (line 3) and l ∈ J1, LK (line 7) are done
in a random order instead of in separately and in sequence.

15
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4 A particular GWB: the Reconstruction Problem

4.1 Discrete Reconstruction Theory

In this section, we consider a fixed probability measure γ0 =
L∑
l=1

blδzl
on Rd and fixed linear maps

Pi : Rd → Rdi , which allows us to define the input measures νi := Pi#γ0.
The associated GWB problem can be viewed as a reconstruction problem, since the original measure
γ0 is, by construction, an optimal solution. The question is now to determine the solution set of the
Reconstruction Problem (RP):

M := argmin
γ∈P2(Rd)

p∑
i=1

λiW2
2(Pi#γ0, Pi#γ). (RP)

Observe that M ≠ ∅ since γ0 ∈M, by construction.
We will make the following assumptions:

• ∀i ∈ J1, pK, λi ̸= 0 (note that in practice, it is even topical to have λi = 1
p .)

• The (zl) are distinct. For convenience, let Z := (zl)l∈J1,LK.

For the maps Pi, we will consider two settings, the first one being a rank condition:

Hrank :
{
∀i ∈ J1, pK, rankPi = di

ImP T1 + · · ·+ ImP Tp = Rd

Note that the second condition in Hrank is equivalent to
p⋂
i=1

KerPi = {0}.

The second setting is where the rows of the maps Pi are drawn independently from a probability P on
Rd that admits a density with respect to the Lebesgue measure.

HP : ∀i ∈ J1, pK, Pi =


—

(
u

(1)
i

)T
—

—
... —

—
(
u

(di)
i

)T
—

 u
(i)
i ∼ P i.i.d.

We shall see that by Theorem 4.1.5, we have P-almost surely HP =⇒ Hrank if
p∑
i=1

di ≥ d.

This problem is highly connected to tomography, and this section can be seen as a discrete version of
[1], which attempts to reconstruct a continuous measure using projections onto lines, by minimising a
functional with close ties to our reconstruction problem.

4.1.1 A first bound for hyperplanes

Still in the discrete case, if γ1 and γ2 have the same images by the Pi, then if p is large enough, we have
γ1 = γ2. Indeed, a discrete measure of cardinality k is characterised by k + 1 projections on distinct
hyperplanes [13]. This means that the linear maps can impose a unique faithful representation γ, but
does not show the unicity of GWB. In particular, it is important to keep in mind that the problem is
generally incompatible, in the sense that the measures νi and the maps Pi prohibit the existence of a
faithful coupling γ.
Note that the condition Pi#γ1 = Pi#γ2 is implied if γ1 and γ2 are optimal in the continuous case
with density, as shown by [11], Proposition 3.3.
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4.1.2 Characterisation of M

First of all, since W2
2 is a distance on P2(Rd), a solution γ ∈Mmust satisfy ∀i ∈ J1, pK, Pi#γ = Pi#γ0.

Conversely, any probability measure γ ∈ P2(Rd) such that ∀i ∈ J1, pK, Pi#γ = Pi#γ0 zeros the energy
and thus is optimal.
We thus have the property below, which shows that the set of solutions of the reconstruction problem
(RP) is the set of measures that have the same push-forwards by the Pi as the original measure γ0
(hence the name "reconstruction"). Note that this result does not require Hrank.

Property 4.1.1 — Correspondence to a constrained measure set

M =
{
γ ∈ P2(Rd) | ∀i ∈ J1, pK : Pi#γ = Pi#γ0

}
. (7)

In order to avoid confusion with the inverse, we will define as P−◦(B) the reciprocal image of a set B
by a map P . In order to obtain more precise results, we will need the following Lemma:

Lemma 4.1.2 — Linear push-forward formula

Let P ∈Md,h(R) of rank h ≤ d and B ⊂ Rh. Then P−◦(B) = P T (PP T )−1B + KerP

This yields the following useful result under Hrank:

If B is a borelian of Rdi , Pi#γ(B) = γ
(
P Ti (PiP Ti )−1B + KerPi

)
(8)

Below is a visualisation of the set P T (PP T )−1B + KerP , first where B is comprised of two points of
R2 and KerP is a horizontal plane in 3D, and second with B a measurable set of R2: see Figure 4.

PT(PPT) 1B+KerP

ImPT

B

Figure 4: Two illustrations of the linear push-forward formula for a 3D to 2D projection.

P
ro

of

If a ∈ P T (PP T )−1B + KerP , then by writing a = P T (PP T )−1b + x with b ∈ B and
x ∈ KerP , we have Pa = b ∈ B, thus a ∈ P−◦(B).

For the opposite inclusion, consider a ∈ P−◦(B). Since P is of full rank h, we have the

decomposition Rd = ImP T
⊥⊕KerP , with Q := P T (PP T )−1P the orthogonal projection on

ImP T .

Thus we can write a = Qa + (I − Q)a = P T (PP T )−1Pa + (I − Q)a. Since Pa ∈ B, we
conclude that a ∈ P T (PP T )−1B + KerP .
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Now we can formulate a computational necessary condition for solutions inM. Recall that the original

measure is γ0 =
L∑
l=1

blδzl
, and that Z := (zl)l∈J1,LK.

Theorem 4.1.3 — Geometrical condition for solutions

Let γ ∈M. Under Hrank, the support of γ is constrained to a discrete set:

γ

( p⋂
i=1

(Z + KerPi)
)

= 1 (9)

This can be re-written as a reunion of sets that are either singletons or empty:

S :=
p⋂
i=1

(Z + KerPi) =
⋃

(l1,··· ,lp)∈J1,LKp

p⋂
i=1

(zli + KerPi) (10)

Conversely, for a measure supported by S to be inM, it must satisfy a set of equations on the weights,
which we do not describe in all generality.
Consider a setting with p = 2 projections onto lines in R2, with L = 3 point Z = (z1, z2, z3). The
final equation can be visualised as follows: the support of any solution is confined to the intersections
between any two lines of the form zl+KerPi. Here this corresponds to the intersecting points between
an orange and a red line, allowing for 9 possible points, including the original 3: see Figure 5.

Z

ImPT1
ImPT2

ImPT1
ImPT2
S

Figure 5: Illustration of the possible points for the support of a solution. On the left, Z is the original
measure points, and on the right, S is the set of possible points for the support of a solution.

P
ro

of

For the entire proof, consider γ ∈M a solution.

• First, let i ∈ J1, pK and A a borelian of Rd such that PiA ∩ PiZ = ∅.

Using again the decomposition Rd = ImP Ti
⊥⊕KerPi and Qi := P Ti (PiP Ti )−1Pi the

orthogonal projection on ImP Ti , we have A ⊂ QiA+ KerPi.

Letting B := PiA, γ(A) ≤ γ
(
P Ti (PiP Ti )−1B + KerPi

)
. By our linear push-forward

lemma 4.1.2, γ(A) ≤ Pi#γ(B) = Pi#γ0(B) = 0 since by hypothesis B ∩ PiZ = ∅.
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This means that γ(A) = 0.

• Let Ai := ImP Ti \QiZ + KerPi, let us apply the previous result of this proof.

By construction, PiAi ∩ PiZ = ∅. Indeed, if there was such a u ∈ PiAi ∩ PiZ, then
one could write u = Pia where Ai ∋ a = P Ti x + y with x ∈ Rdi , y ∈ KerPi, and
also u = Piz, z ∈ Z thus PiP Ti x = Piz, yielding x = (PiP Ti )−1Piz then a = Qiz + y,
contradicting a ∈ Ai.

Therefore using our result above, γ(Ai) = 0. Then γ

( p⋂
i=1

Ai

)
= 1.

Remarking that Ai = QiZ + KerPi = Z + KerPi, we deduce the first result.

• For the second result, first note that since
p⋂
i=1

KerPi = {0}, each affine set
p⋂
i=1

zli +

KerPi is either a single point or empty. The second equation can then be obtained by

distributing the intersection over the union in
p⋂
i=1

Z + KerPi =
p⋂
i=1

L⋃
l=1

zl + KerPi.

4.1.3 Some basic random geometry results

For this section, we consider P a probability measure on Rd which is absolutely continuous with respect
to the Lebesgue measure. Note that these results also hold if P is uniform over Sd, the unit sphere.

Lemma 4.1.4 — Random Affine Hyperplanes

• Consider two affine hyperplanes H = a + u⊥, H ′ = b + v⊥, where (u, v) are mutually
independent vectors of law P and a, b ∈ Rd. Then P-almost surely, dimH ∩H ′ = d− 2.

• Let p ≤ d. If ∀i ∈ J1, pK, Hi = ai + u⊥
i and the ui are iid ∼ P and (ai) ∈ Rd×p,

then P-almost surely, dim
p⋂
i=1

Hi = d− p.

P
ro

of

First consider u, v ∼ P iid.

Note that dim
(
u⊥ ∩ v⊥

)
= d− 1⇐⇒ u⊥ = v⊥ ⇐⇒ u ∈ Rv or v = 0

Since P is absolutely continuous w.r.t. Lebesgue, P(v = 0) = 0, thus we can neglect the case
v = 0 in the following.

Then P
(
dim u⊥ ∩ v⊥ = d− 1

)
=
ˆ

Rd

P
(
u ∈ Rv | v

)
dP(v)

Yet given v ∈ Rd fixed, P(Rv) = 0 since P is absolutely continuous w.r.t. Lebesgue, thus
P
(
dim u⊥ ∩ v⊥ = d− 1

)
= 0. This proves point 1.

Point 2 is obtained using a similar reasoning to point 1 using induction. The idea is that

if dim
p−1⋂
i=1

Hi = d − p + 1 and dim

p−1⋂
i=1

Hi ∩Hp

 = d − p + 1, then that would impose

up ∈ Span(u1, · · · , up−1), and this condition is false P-a.s., since dim Span(u1, · · · , up−1) < d
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In the random setting for our problem, a random linear map is almost-surely of full rank. Furthermore,
given a a list of p independent random linear maps Pi : Rd → Rdi , if their target dimensions are large
enough, then their common kernel is trivial. Equivalently, their transposes span Rd: ∑i ImP Ti = Rd,
a.s.. This is formalised in Property 4.1.5:

Property 4.1.5 — Kernel of random linear maps

Suppose the random map assumption HP. Then P-almost surely, ∀i ∈ J1, pK, rankPi = di.

Furthermore, if
p∑
i=1

di ≥ d, then P-almost surely,
p⋂
i=1

KerPi = {0}.

P
ro

of

Let i ∈ J1, pK. We have rankPi = d − dim KerPi, and KerPi =
di⋂
j=1

(
u

(j)
i

)⊥
, which is of

dimension d− di, P-a.s. (by 4.1.4).

Assuming
p∑
i=1

di ≥ d, we have
p⋂
i=1

KerPi =
p⋂
i=1

di⋂
j=1

(
u

(j)
i

)⊥
, which is P-a.s. of dimension

α ≤ d−
p∑
i=1

di thus is reduced to {0}.

4.1.4 Almost-sure unicity

With these new tools we can further restrict the condition on the set of solutions M: Theorem 4.1.6
below shows that if the random linear maps Pi cover the original space Rd with redundancy (i.e. the
sum of their target space dimensions strictly exceed d), then almost surely, the reconstruction problem
has a unique solution: the original measure.

Theorem 4.1.6 — Almost-sure unicity for reconstruction

If HP is verified, and further assuming
p∑
i=1

di > d:

P-almost surely, S = Z and thus M = {γ0}.

P
ro

of

— Step 1 : S ⊂ Z

Let l := (l1, · · · lp) ∈ J1, LKp and Sl :=
p⋂
i=1

(zli + KerPi). We want to show Sl ⊂ Z.

We have ∀i ∈ J1, pK, KerPi =
di⋂
j=1

(
u

(j)
i

)⊥

Since
p∑
i=1

di > d, we can let i0 ∈ J1, pK and j0 ∈ J1, di0K such that
i0∑
i=1

di + j0 = d, allowing us

to separate Sl = F ∩G where:

• F :=
[
i0⋂
i=1

(zli + KerPi)
] ⋂ zli0

+
j0⋂
j=1

(
u

(j)
i0

)⊥
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• G :=

zli0
+

di0⋂
j=j0+1

(
u

(j)
i0

)⊥
 ⋂  p⋂

i=i0+1
(zli + KerPi)


By construction F is the intersection of d affine hyperplanes, hence a singleton {x}, x ∈ Rd.

One may write x = f
(
(zl1 , · · · zli0

), (u(j)
i )(i,j)∈T

)
,

where T = {(i, j) ∈ J1, i0 − 1K× J1, dK : j ≤ di} ∪ {(i, 1), · · · (i, j0)}

which we will write concisely as f(zl1 · · · zli0
, U0), U0 denoting (u(j)

i )(i,j)∈T .

Let a+ u⊥ one of the affine hyperplanes in the intersection defining G:

• if j0 + 1 ≤ di0 , let a := zli0
and u := u

(j0+1)
i0

.

• if j0 + 1 > di0 , let a := zli0+1 and u := u
(1)
i0+1.

Let us now reason conditionally to U0, which in particular determines x but not u ∼ P.

We have Sl ⊂ {x} ∩ a+ u⊥.

• If x = a, then Sl ⊂ Z and this step is finished.

• If x ̸= a then let y := x− a ̸= 0. We have x ∈ a+ u⊥ ⇔ u ∈ y⊥.
But P(u ∈ y⊥) = 0 thus Sl = ∅, P-a.s.

We conclude that Sl ⊂ Z and thus S ⊂ Z, P-a.s. after marginalising over U0.

— Step 2 : S ⊃ Z

To show S ⊃ Z, let l ∈ J1, LK and l := (l, · · · , l). We have Sl =
p⋂
i=1

(zl + KerPi) = {zl}.

— Step 3 : M = {γ0}

Now we have proven S = Z, and thus that any solution γ ∈ M is supported by Z, let us

write it γ =
L∑
l=1

alδzl
. In the following we let i := 1 and drop the i index for convenience.

Since γ ∈M, we have in particular P#γ = P#γ0 (P := P1). Thus
L∑
l=1

alδPzl
=

L∑
l=1

blδPzl
.

If the points (Pzl)l∈J1,LK are distinct, then this implies ∀l ∈ J1, LK, al = bl.

Let l ̸= l′ ∈ J1, LK2. We have Pzl = Pzl′ ⇔ zl − zl′ ∈ KerP .

Yet x := zl − zl′ ̸= 0 by hypothesis on Z. x ∈ KerP ⇔ ∀j ∈ J1, d1K, u(j) · x = 0

Letting u := u(1), we have P(x ∈ KerP ) ≤ P(u.x = 0) = P(u ∈ x⊥) = 0

Finally, P-a.s. the (Pzl) are distinct and thus ∀l ∈ J1, LK, al = bl

We can finally conclude that M = {γ0}, P-a.s..
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4.1.5 Discussing the general case

The previous theorem 4.1.6 only provides unicity almost-surely, however "improbable" counter exam-
ples do exist with excessive symmetry. Below we present a counter-example adapted from [13]. Let
d := 2, p := L > d and ∀i ∈ J1, pK, di := 1.

Consider zl :=
(
cos

(
(2l+1)π

L

)
, sin

(
(2l+1)π

L

))T
, Pl :=

(
cos

(
(2l+1)π

2L

)
, sin

(
(2l+1)π

2L

))
.

As can be seen below (Figure 6), for L = 3, this corresponds to placing the (zl) on every other vertex
of a regular 2L-gon, and defining the Pl such that ImP Tl is the l-th bisector of the 2L-gon.

Z

ImPT1
ImPT2
ImPT3

Figure 6: Illustration of a pathological sur-critical case without unicity for specific projections Pi.

The points of S are the points of the form
3⋂
i=1

(zli + KerPi), or visually the intersection points of a

yellow line, a red line and a purple line. We can see that the remaining vertices of the polygon constitute
another valid measure γ′ whose push-forwards Pi#γ′ are all the same as those of the original measure.

In the case of hyperplanes (h = d− 1), Theorem I.2 from [13] indicates that a necessary condition for
unicity is p > L, whereas in our almost-sure setting (Theorem 4.1.6), we obtained a condition that is
independent of L.

4.1.6 The critical case ∑i di = d

In the theorem below, we show that the example below Theorem 4.1.3 is representative of the critical
case: in this case, d = 2, p = 2, d1 = d2 = 1, L = 3 and there are 9 = 32 = Lp points in S.

Theorem 4.1.7 — Number of admissible points in the critical case

In the critical case
p∑
i=1

di = d and under HP, #S = Lp P-almost surely.

P
ro

of

— Step 1: finding other valid points

Recall 4.1.3: S =
⋃

(l1,··· ,lp)∈J1,LKp

p⋂
i=1

(zli + KerPi).

Let l ∈ J1, LKp non constant, and let i ̸= j ∈ J1, LK2 such that li ̸= lj .

Then Sl ⊂
(
zli + u⊥

)
∩
(
zlj + v⊥

)
, where u := u

(1)
i , v := u

(1)
j ∼ P⊗ P.

22



Generalised Wasserstein Barycentres Eloi 2022

Then since the (zl) are distinct, zli ̸= zlj and, using the same random geometry arguments
as 4.1.6, step 3, we show separately that P(zli ∈ zlj + v⊥) = 0 and P(zlj ∈ zli + v ⊥) = 0.

This proves that P-a.s., zli and zlj do not belong to Sl.

Since we have shown this for any i ̸= j verifying li ̸= lj , we have proven that
Sl ∩

{
zl1 , · · · , zlp

}
= ∅.

Then for the other points: let z ∈ Z \
{
zl1 , · · · , zlp

}
, we can use the same argument to prove

that P
(
z ∈ zl1 +

(
u

(1)
1

)⊥
)

= 0, and conclude Sl ∩ Z = ∅, P-a.s..

Finally, since Sl is the intersection of exactly d random affine hyperplanes in dimension d,
by Lemma 4.1.4, is it a point, P-a.s..

— Step 2: counting distinct the valid points

Let l ̸= l′ ∈ J1, LKp × J1, LKp non constant. By Step 1, Sl, Sl′ are points outside Z.

Let i ∈ J1, pK such that li ̸= l′i. Then Sl ∩ Sl′ ⊂
(
zli + KerPi

)
∩
(
zl′i + KerPi

)
=: F

Then since the (zl) are distinct, we have zli ̸= zl′i , thus F = ∅.

We can conclude that the singletons Sl, Sl′ are distinct. Finally, #S = #J1, LKp = Lp.

To finish with the critical case, we will now count the number of optimal measures.
We assume that ∀i ∈ J1, pK, ∀l ̸= l′ ∈ J1, LK2, Pizl ̸= Pizl′ (which is true P-a.s. under HP).
— Counting the optimal measures in the uniform case
If we impose both γ and γ0 to be uniform discrete measures with L points (following the framework
of [9]), then there is a finite (but combinatorial) amount of optimal measures.
Indeed, choosing an optimal solution corresponds to choosing L points xl, with the only restriction
of having for every pair of points xl, x

′
l verify ∀i ∈ J1, pK, li ̸= l′i (otherwise they would have the same

projection by Pi and excessive weight on Pizli , contradicting the requirements for M: 4.1.1).

We then have
L−1∏
n=0

#J1, L− nKp = (L!)p possibilities.

— Counting the optimal measures without restrictions on the weights
Now we take a look at the number of optimal measures, so let γ ∈M. We have P-a.s.:

By Theorem 4.1.7, γ is of the form γ =
∑

l∈J1,LKp

alδxl . Note that by construction, Pixl = Pizli .

By Property 4.1.1, we have ∀i ∈ J1, pK, Pi#γ = Pi#γ0.

Let i ∈ J1, pK. We have Pi#γ =
∑

l∈J1,LKp

alδPizli
. which equals Pi#γ0 =

L∑
k=1

bkδPizk
.

Since the (Pizl)l are assumed distinct, this entails for all k ∈ J1, LK:
∑

l−i∈J1,LKp−1

al1,··· ,li−1,k,li+1,··· ,lp = bk

Where l−i indicates that we index this (p− 1)-tuple on J1, LK \ {k}.
We can re-write this condition as a ∈ Πp

L(b), the set of L-dimensional p-tensors on R+ (RLp

+ ) with all
p marginals equal to b.

Conversely, if γ is of the form γ =
∑

l∈J1,LKp

alδxl with a ∈ Πp
L(b), then we have by construction

∀i ∈ J1, pK, Pi#γ = Pi#γ0 and thus γ ∈M.
In particular, there is an infinite amount of solutions to the reconstruction problem in the critical
case, P-a.s..

23



Generalised Wasserstein Barycentres Eloi 2022

4.2 Consequences on Sliced Wasserstein Methods

4.2.1 Reminders on Sliced Wasserstein Methods

Before drawing conclusions on Sliced OT, we provide a swift reminder of said methods [7, 17].

Definition 4.2.1 — Sliced Wasserstein Distance [7]

The Sliced Wasserstein Distance between two measures α, β ∈ P2(Rd) is defined as:

SW2
2(α, β) :=

ˆ

Sd

W2
2(Pθ#α, Pθ#β)dσ(θ) (11)

Where Sd is the unit sphere of Rd, σ is the uniform measure on Sd and Pθ := θT .

In practice, the integral defining SW2
2 is estimated via a Monte-Carlo method.

The main algorithm used for computing the sliced OT mapping is the following. It relies on the fact
that discrete 1D OT boils down to sorting the input points (see [17], §2.6 for example).

Algorithm 4.2.2 — Lagrangian SGD for sliced OT [7]

Let α :=
1
L

L∑
l=1

δxl
, β :=

1
L

L∑
l=1

δyl
two discrete probability measures on Rd.

Consider the closed-form W2
2(Pθ#α, Pθ#β) =

L∑
l=1
∥⟨xσ(l) − yτ(l), θ⟩∥22 (12),

where θ ∈ Sd and σ, τ ∈ SL respectively sort the numbers (xl · θ)l and (yl · θ)l.

The mapping from α to β is done using SGD by sampling θ ∈ Sd and descending the gradient
of the closed form above with respect to (xl)l.

4.2.2 Consequence of the reconstruction result on SW

Given the previous reconstruction results 4.1.6 and 4.1.7, we can describe a pathological behaviour
of SW with insufficient projections. We consider P a probability over Sd admitting a density (in
particular, this applies to the logical example P uniform).

Property 4.2.3 — SW with insufficient projections

Let γ0 :=
L∑
l=1

blδzl
, where the (zl) are distinct and b ∈ ΣL. Assume that θ1, · · · , θp i.i.d. ∼ P.

Consider the MC estimator ŜWp(α, β) :=
1
p

p∑
i=1

W2
2(Pθi

#α, Pθi
#β) and assume p ≤ d.

P-a.s., there exists an infinity of measures γ ̸= γ0 ∈ P2(Rd) verifying ŜWp(γ0, γ) = 0.

Note that, as can be seen visually in 3.3: Discussing the general case, the other measures γ can be at
an arbitrarily large W2

2 distance of γ0:

• In the case p < d, this is easy to see since the set of admissible points is infinite and one may
consider measures with points that are arbitrarily far away.

• In the case p = d, the distance can be grown by scaling the points of γ0 further away from the
origin.
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In practice, sliced-Wasserstein Generative Models compute SW in the data space or in the data
encoding space ([15], [12]), which yields high values of d, in particular for images. Note that the
necessity behind having a large p was already hinted at in [15], §3.3.

Conversely, in the sur-critical case, the Sliced distance does have the desired property:

Property 4.2.4 — SW with sufficient projections

In the same framework as the previous property, assume now p > d.

Then by 4.1.6, P-almost surely, {γ0} = argmin
γ∈P2(Rd)

ŜWp(γ0, γ).

4.3 Experimental Results on the Reconstruction Problem

4.3.1 The Spiral Dataset

These tests can be reproduced using release v1.0 of our repository. We build a spiral dataset, where
a discrete uniform measure µ is projected p times using randomly drawn linear maps Pi : Rd → Rh
(with normalised lines): the input measures are defined as Pi#µ.

We define our 2D spiral as a sampling of x(t) =
t

π

(
cos(t)
sin(t)

)
, t ∈ [0, 2Nπ[, (N loops).

In higher dimensions d = 2n we stack n 2D spirals, for d = 2n+ 1 we stack n 2D spirals and a linear
dimension [t]

In this setting, we can view the (GWB) problem as a reconstruction problem: the estimated barycentre
γ can be compared with the ground truth µ (the spiral) using the 2-Wasserstein distance.

For the entire study, we consider measures made of Ki = L = 30 points. In order to get a visual
understanding of the values, below is an example with p = 15 projections, which yields an imperfect
reconstruction the original spiral, as can be seen in Figure 7. Given the reconstruction results (in
particular Theorem 4.1.6), we conclude that in this case, BCD converges towards a local optimum
that is different to the unique global optimum (the original spiral).

Figure 7: (GWB) resolution on the spiral dataset using BCD with p = 15 projections.

Note that with a Wasserstein distance of 0.041, the spiral is imperfectly reconstructed, yet recognisable.

As discussed in §4.1, with L = 30 points and p = 40 projections, there is a unique global optimum
(which is the original measure γ0), however there are local optima, which are unfortunately reached
by the algorithms:
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Figure 8: (GWB) resolution on the spiral dataset using SGD and BCD, with p = 40 projections.

In this section, we test our three solvers (GD: Algorithm 4, SGD: Algorithm 5 and BCD: Algorithm
6) on the Reconstruction Problem (RP) using the toy spiral dataset.

4.3.2 Impact of the precision ε

This test can be reproduced using version 1.3 of our repository. For the same reconstruction setting,
we test our different algorithms while varying the target precision ε and monitor the impact on the
W2

2 reconstruction error and on the computation time.

10 9 10 7 10 5 10 3 10 1

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

W
2 2 W2

2  median
W2

2  [30%,70%]

0

5

10

15

20

tim
e 

(s
)

Spiral dataset: impact of  on W2
2: 70 2D -> 1D projections

time (s) median
time (s) [30%,70%]

Figure 9: GD resolution of the reconstruction problem, varying the precision ε. The original measure
is a 30-point 2D spiral, projected 70 times on lines, and the solver is capped at 300 iterations.
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Figure 10: SGD resolution of the reconstruction problem, varying the precision ε. The original measure
is a 30-point 2D spiral, projected 70 times on lines and the solver is capped at 300 iterations.

Neither Gradient Descent nor Stochastic Gradient Descent manage to reconstruct the original spiral
exactly (see Figure 9 and Figure 10), whatever the target precision: the median W2

2 distance is around
0.015, which corresponds to an imperfect but recognisable spiral.
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Figure 11: BCD resolution of the reconstruction problem, varying the precision ε. The original measure
is a 30-point 2D spiral, projected 70 times on lines and the solver is capped at 300 iterations.

However, not only is BCD over ten times faster, with a target precision of under 10−5, the original
spiral is properly reconstructed at numerical precision (see Figure 11).

Theoretically (Theorem 4.1.6), with p = 70 projections the setting is well past the minimum required
projections (p = 3 in 2D for 1D projections), however experiments show that a significantly greater
amount of projections is required in order to limit the number of local optima and stationary points.
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4.3.3 Impact of the number of projections p

Now we let the number of projections p vary and observe the median W2 distance (over 30 samples
to account for algorithm instability) and also display the .3 and .7 quantiles as an area around the
W2(p) curve. This test can be reproduced using version 1.3 of our repository.

If the optimisation was perfect, as soon as p ≥ 3 in dimension 2, we should converge to the unique
global optimum (see Theorem 4.1.6). However, neither SGD nor GD converge towards the original
measure (see Figure 12), while BCD converges most of the time for p ≥ 55 with significant instability
in 2D.
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Figure 12: Impact of the number of projections p on the W2
2 reconstruction error for the (GWB). The

original measure is a 30-point 2D spiral, projected on lines and the solver is capped at 300 iterations
with a precision of 10−5.

In the 3D case with projections on lines(Figure 13), the discrepancy between the Gradient Descent
Methods and the Block Coordinate Method is clear, with essential convergence of BCD for p ≥ 60.
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Figure 13: Impact of the number of projections p on the W2
2 reconstruction error for the (GWB)

resolution. The original measure is a 30-point 3D spiral, projected on lines and the solver is capped
at 300 iterations with a precision of 10−5.

An important factor to keep in mind is the importance of the projection dimension: in 3D, with
projections on planes, all algorithms reconstruct perfectly for p ≥ 10. This shows that the non-convex
optimisation problem becomes significantly simpler with higher-dimensional projections, even though
there is theoretical unicity with less information.
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Figure 14: Impact of the number of projections p on the W2
2 reconstruction error for the (GWB)

resolution. The original measure is a 30-point 3D spiral, projected on planes and the solver is capped
at 300 iterations with a precision of 10−5.

This suggests that reconstruction from lines in any dimension higher than 2 is fairly unreliable and
would require a prohibitive amount of projections, contrary to intuition. This is due to optimisation
woes and not to a lack of unicity.
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4.4 Local Optima: L = 2 case

In order to study the local optima for the reconstruction problem (RP), we first study the case L = 2.
For simplicity, we consider the measures weights to be fixed and uniform.

We optimise the coupling positions y1, y2 by minimising

E(y1, y2) :=
p∑
i=1

λiW2
2

(1
2δPiz1 + 1

2δPiz2 ,
1
2δPiy1 + 1

2δPiy2

)
.

Since E is non convex, we use alternated optimisation with the energy:

J(Y, π) =
p∑
i=1

λi
∑

(k,l)∈J1,2K2

π
(i)
k,l∥Pizk − Piyl∥

2
2 (13)

With Y = (y1, y2) ∈ Rd × Rd and π = (π1, · · · , πp) ∈ Up2, where U2 := Π
(
(1

2 ,
1
2), (1

2 ,
1
2)
)
.

We begin with a result regarding the problem structure:

Theorem 4.4.1 — Cell Structure for 2-point reconstruction

The assignment map A :

 Rd × Rd −→ P(Up2)
(y1, y2) 7−→ argmin

π∈Up
2

J(Y, π) is piece-wise constant, defining a

cell structure on R2d.

Precisely, let (y1, y2) ∈ R2d and i ∈ J1, pK. There are three cases:

• Under (Cie) : ∥Pi(z1 − y1)∥22 + ∥Pi(z2 − y2)∥22 = ∥Pi(z2 − y1)∥22 + ∥Pi(z1 − y2)∥22,

any πi =
1
2

(
a 1− a

1− a a

)
, a ∈ [0, 1] is optimal.

• Under (Cim) : ∥Pi(z1 − y1)∥22 + ∥Pi(z2 − y2)∥22 < ∥Pi(z2 − y1)∥22 + ∥Pi(z1 − y2)∥22,

πi =
1
2

(
1 0
0 1

)
is optimal.

• Under (Cis) : ∥Pi(z1 − y1)∥22 + ∥Pi(z2 − y2)∥22 > ∥Pi(z2 − y1)∥22 + ∥Pi(z1 − y2)∥22,

πi =
1
2

(
0 1
1 0

)
is optimal.

Notes on the names of the three cases:

• (Ce) ("e" for "equal") corresponds to ambiguity between matching y1, y2 to z1, z2 or z2, z1. It is
the case shown in Figure 6.

• (Cm) ("m" for "match"): matching y1, y2 to z1, z2 is less costly than z2, z1.

• (Cs) ("s" for "swap"): matching y1, y2 to z2, z1 is less costly than z1, z2.

Furthermore, note that by expanding the square distances, one may re-write the conditions. One
recovers conditions of the form:

(Cim) : P Ti Pi(z2 − z1) · (y2 − y1) > 0 (14)

Notably, this condition is linear in y2 − y1 and only depends on this difference.
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P
ro

of
First of all, by combining the three independent linear equations that derive from πi ∈ U2:
πi(1

2 ,
1
2)T = (1

2 ,
1
2)T and πTi (1

2 ,
1
2)T = (1

2 ,
1
2)T , one may prove than an optimal coupling is

always of the form

πi =
1
2

(
a 1− a

1− a a

)
, a ∈ [0, 1].

Then for such a coupling πi, we write
∑

(k,l)∈J1,2K2

π
(i)
k,l∥Pizk − Piyl∥

2
2 = at+ c,

with t =
1
2
(
∥Pi(z2 − y1)∥22 + ∥Pi(z1 − y2)∥22 − ∥Pi(z1 − y1)∥22 − ∥Pi(z2 − y2)∥22

)
,

and c =
1
2
(
∥Pi(z2 − y1)∥22 + ∥Pi(z1 − y2)∥22

)
.

We solve argmin
a∈[0,1]

aw + c, yielding the announced three cases depending on t.

We define the matching configuration of a position (y1, y2) as m ∈ {−1, 0, 1}p such that ∀i ∈
J1, pK, mi = 0 under Cie, 1 under Cim and −1 under Cis. These configurations encode the cell structure
of the (y1, y2) space, where a cell is defined as the set Cm =

{
(y1, y2) ∈ R2d | m(y1, y2) = m

}
, for

a given non-degenerate configuration m ∈ {±1}p. A cell is determined by the conjunction of linear
conditions (see (14)), thus it is either empty or a polytope.
By Theorem 4.4.1, a matching configuration m ∈ {−1, 1}p (assumed with no ambiguities, i.e. each
mi ̸= 0) defines a unique optimal coupling πm where each π(i)

m satisfies the corresponding case in 4.4.1.
For theoretical purposes, if we are in a toy situation with known positions z1, z2, we propose the
following algorithm that computes the configurations of all the non-empty cells. Algorithm 7 is a
refinement over the brute-force solution which checks the emptiness of all 2p cells:

Algorithm 7: Recursive computation of valid cell configurations
Data: True positions z1, z2 ∈ Rd, linear maps ∀i ∈ J1, pK, Pi ∈Mdi,d(R) and

tolerance t > 0.

Result: List M of all the non-empty cell configurations.
1 Initialisation: M = ∅;
2 if p = 1 then
3 Return M := {(1), (−1)};
4 end
5 Compute recursively M−1 the non-empty cell configurations for i ∈ J1, p− 1K,

i.e. the output of Algorithm 7 for (Pi)i∈J1,p−1K;
6 Let M̃ := {(m, ε) | m ∈M−1, ε ∈ {±1}};
7 for m ∈ M̃ do
8 If{

x ∈ Rd | ∀i ∈ J1, pK : miP
T
i Pi(z2 − z1) · x > 0

}
̸= ∅, M ←M ∪ {m};

9 end
10 Return M;

Note that line 8, is done in practice by solving the linear feasibility problem min
x∈Rd

∀i∈J1,pK: miP
T
i Pi(z2−z1)·x≥t

1.

Any non-empty cell is an unbounded polytope, since its is defined by an intersection of linear inequa-
tions (see (14)) with the common second term 0. Therefore, the value of the tolerance parameter does
not matter, since a non-empty cell is stable by multiplication by a positive factor.
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Theorem 4.4.2 — Cell movement

Let (y1, y2) ∈ Rd × Rd and let m its configuration. Assume m ∈ {±1}p.

Then the next optimal positions y∗
1, y

∗
2 ∈ argmin

(y1,y2)∈R2d

J(y1, y2, πm) are

y∗
1 = A−1(Bmz1 + Cmz2) and y∗

2 = A−1(Bmz2 + Cmz1),

where Bm =
p∑
i=1
mi=1

λiP
T
i Pi, Cm =

p∑
i=1

mi=−1

λiP
T
i Pi and A =

p∑
i=1

λiP
T
i Pi.

(y∗
1, y

∗
2) is a local optimum iif its cell is stable, i.e. if its configuration m′ equal m. This is

equivalent to the condition, with v := z2 − z1:

∀i ∈ J1, pK,


if mi = 1 : BmA−1PT

i Piv · v > CmA−1PT
i Piv · v

if mi = −1 : CmA−1PT
i Piv · v > BmA−1PT

i Piv · v
.

More generally, given (y1, y2) of configuration m, the configuration (y∗
1, y

∗
2) of the next step

(optimising in (y1, y2) with π = πm fixed), is given by:

∀i ∈ J1, pK, m∗
i = sign

(
vT (Bm − Cm)A−1P Ti Piv

)
. (15)

Notice that in particular, y∗
1 + y∗

2 = z1 + z2 since Bm + Cm = A.

P
ro

of

Noticing that J(y1, y2, πm) is jointly convex and quadratic in y1, y2, we first write:

J(y1, y2, πm) =
p∑
i=1
mi=1

λi

(
1
2∥Pi(z1 − y1))∥22 +

1
2∥Pi(z2 − y2))∥22

)

+
p∑
i=1

mi=−1

λi

(
1
2∥Pi(z2 − y1))∥22 +

1
2∥Pi(z1 − y2))∥22

)
.

Then

∇y1J(y1, y2, πm) =
p∑
i=1
mi=1

λiP
T
i Pi(y1 − z1) +

p∑
i=1

mi=−1

λiP
T
i Pi(y1 − z2)

= (Bm + Cm)y1 −Bmz1 − Cmz2.

Using Bm + Cm = A, y∗
1 = A−1(Bmz1 + Cmz2) and similarly y∗

2 = A−1(Bmz2 + Cmz1).

The local optimality condition and the next step’s configuration are obtained by expanding
the squares in 4.4.1 and substituting y∗

1, y
∗
2.

Theorem 4.4.2 shows that in order to study the local optima of E, the energy of (RP), one can
study the graph of cell movements, i.e. the graph where the nodes are the admissible configurations
m and the edges are the next steps in the BCD algorithm. If a path ends at a configuration m ∋
{(1, · · · , 1), (0, · · · , 0)}, then the associated BCD algorithm will convergence towards a (strict) local
optimum.

Below (Figure 15) is an example of the cell structure. The numerical experiments below can be
reproduced using version 1.4 of our repository.
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Figure 15: Visualisation of the cell structure for p = 4 in dimension 2. On the left, we view different
initialisations (y1, y2) (in red and orange) and their corresponding BCD steps (y∗

1, y
∗
2), which should be

compared to the original points (z1, z2) in purple. On the right, we view the cell structure depending
on the position of y2 − y1 ∈ R2, since the cell conditions only depend on this difference (see (14)).
We can see that in this example all cells are stable, thus there are three strict local optima of E in
addition to the global optimum. The (y1, y2) pair number 0 is sent in one iteration to (z2, z1), while
the pair "1" is sent to a local optimum, and the pair "2" is sent to (z1, z2).

A point of crucial importance is the number of stable cells (i.e. the number of local optima in the
reconstruction problem) and the proportion of stable cells amongst all the cells.

10 15 20
p

0

50

100

150

200

250

300

350

400

14.8%
stable

Total cells:
      512

3.7%
stable

Total cells:
     2942

1.4%
stable

Total cells:
    10072

Impact of p on the number of stable cells

Figure 16: For p = 10, 15, 20, we count the number of local optima for a 2-point, 5-dimensional
reconstruction problem (projecting on lines: h = 1). For each of the three settings we sampled the
maps Pi and depicted the samples stable cells counts as box plots, with in blue the median ratio of
stable cells. In green, above the box plots is the total number of cells (which only depends on p)
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      512

Impact of h on the number of stable cells

Figure 17: For p = 10 and the projection dimension h = 1, 2, 3, we count the number of local optima
for a 2-point, 5-dimensional reconstruction problem. For each of the three settings we sampled the
maps Pi and depicted the samples stable cells counts as box plots, with in blue the median ratio of
stable cells. In green, above the box plots is the total number of cells (which only depends on p)

Furthermore, an important question is how many cells lead to the global optimum. In order to test
this numerically, we fix a sample of the maps Pi from a previous experiment (mapping from R5 to R),
and compute all the next steps from each cell (thereby computing the cell movement graph):

• For a sample in dimension d = 5 and p = 10 projections, 70 cells out of 512 are stable, and
taking a starting cell at random, the probability of reaching the global optimum is 3.5%.

• For a sample in dimension d = 5 and p = 20 projections, 190 cells out of 10 072 are stable, and
taking a starting cell at random, the probability of reaching the global optimum is 33.5%.

Before establishing a more precise result on the movement between cells, we need a technical concen-
tration lemma for random matrices. Indeed, in the case di = 1 with uniform weights λi = 1/p, the

matrices A and even Bm can be seen as empirical covariance matrices: for instance A =
1
p

p∑
i=1

uiu
T
i ,

where Pi = uTi . Then with some random matrix theory, we can estimate how close the spectrum of A

is to the real covariance matrix
1
d
Id.

Lemma 4.4.3 — Concentration of the spectra of A and Bm

If the Pi = uTi are drawn using ui ∼ P uniform on Sd, then with probability at least 1 −
4 exp(−c

√
d), with c > 0 a constant:

∀µ ∈ sp(A),
1
d
−

C
√
dp
≤ µ ≤

1
d

+
C
√
dp
,

with C > 0 a numerical constant (empirically estimated to satisfy 0 < C ≤ 5), and similarly:

∀µ ∈ sp(Bm),
1
d
−

C√
dp+ ≤

p

p+µ ≤
1
d

+
C√
dp+,

with p+ := # {i ∈ J1, pK | mi = +1} is the number of terms in the sum defining Bm.
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In order to prove this lemma we will use the following theorem, reproduced from [2]:

Theorem 4.4.4 — Adamczak et al. [2], Corollary 1

Let A =
1
p

p∑
i=1

uiu
T
i , with the ui ∈ Rd isotropic random vectors.

Suppose further that for some ψ,K > 0 numerical constants:

a) max
i∈J1,pK

sup
y∈Sd

∥ui · y∥ψ1 ≤ ψ, with ∥X∥ψ1 = inf
{
C > 0 | E

[
e|X|/C ≤ 2

]}
.

b) P
(

max
i∈J1,pK

(|ui|/
√
d > K max(1, (p/d)1/4)

)
≤ e−

√
d.

Then, with probability at least 1− 2e−c
√
d, c > 0 being a numerical constant:

∀µ ∈ sp(A), 1− C0(ψ +K)2

√
d

p
≤ µ ≤ 1 + C0(ψ +K)2

√
d

p
.

A sufficient condition for a) and b) is for the ui to satisfy a Poincaré inequality of constant L:
V [f(ui)] ≤ L2E

[
∥∇f(ui)∥2

]
, for any compactly supported smooth function f .

We now use Theorem 4.4.4 to prove our Lemma 4.4.3:

P
ro

of

We check that the Poincaré inequality is satisfied for ui =
√
dni, where ni ∼ σ, the uniform

law on the sphere Sd. We drop the i index, considering that our variables are i.i.d..

We use the spherical Poincaré-Wirtinger inequality, which states that for any smooth func-
tion f such that E [f(n)] = 0:

ˆ

Sd

f2(x)dσ(x) ≤
1
d

ˆ

Sd

∥∇f(x)∥2 dσ(x).

Let g smooth on Rd and let g := E
[
g(
√
dn)

]
. We have: V [g(u)] = E

[
(g(
√
dn)− g)2

]
,

and letting f := x 7→ g(
√
dx)− g, f is smooth and verifies E [f(n)] = 0.

Thus by Poincaré-Wirtinger:
ˆ

Sd

f2(x)dσ(x) ≤
1
d

ˆ

Sd

∥∇f(x)∥2 dσ(x),

which is to say: V [g(u)] ≤
ˆ

Sd

∥∥∥∇g(
√
dx)

∥∥∥2
dσ(x) = E

[
∥∇g(u)∥2

]
.

Thus we can apply Theorem 4.4.4 with L = 1, yielding the first equation of Lemma 4.4.3,
after dividing by d. Let µ ∈ sp(dA): by Theorem 4.4.4, we have with high probability
µ ∈

[
1± C

√
d
p

]
. Then for any ν ∈ spA, dividing by d yields ν ∈

[
1
d ±

C√
dp

]
.

The second equation is obtained by renormalising Bm using
p+

p
.

By union bound, the probability of the intersection of the two events exceeds 1− 2e−c
√
d −

2e−c
√
d = 1− 4e−c

√
d.
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Theorem 4.4.5 — Proportion of cells leading to the optimum

Suppose that the linear maps Pi are Pi = uTi , where the ui ∼ σ, the uniform law on Sd. Further
assume that the barycentre weights are uniform: λi = 1

p .

Then there exists two constant c, C > 0 (taken from 4.4.4) such that with probability exceeding

1− 4e−c
√
d, with t = C

√
d

p
we have:

If t < 1/5, and
√
p+

p
or
√
p−

p
>

t+
√

5t2 − 6t+ 2
2− 4t , then the next BCD step will reach the

optimal solution: (y∗
1, y

∗
2) = (z1, z2) or (y∗

1, y
∗
2) = (z2, z1) respectively.

In order to get more insight on the result, let us look at the first two terms of the asymptotic expansion
in t→ 0 of our condition, where we consider d fixed and p→ +∞ for our interpretation:

• At the limit t → 0, all configurations m such that p+ > p/2 or p− > p/2 are such that their
next step (y∗

1, y
∗
2) will be the global optimum. This means that any majority of + or − in the

configuration will lead to a next step with only + or − respectively, which is to say the matching
+ solution (y∗

1, y
∗
2) = (z1, z2) or the swap − solution (y∗

1, y
∗
2) = (z2, z1).

• At the first order, the condition is
√
p+

p
or
√
p−

p
>

1
√

2
+

2 +
√

2
4 t. This means that in reality,

the "vote" must have a slightly stricter majority, with a condition of the form p+ > p/2 + α
√
p

for a next step with only +’s and p− > p/2 + α
√
p for a next iteration with only −’s.

We remind that p+ := # {i ∈ J1, pK | mi = +1} is the number of terms in the sum defining Bm, with
a similar definition of p− = p− p+ for Cm.

Let us take a look at the trend of the necessary discriminative ratio:

0.0000.0250.0500.0750.1000.1250.1500.1750.200
t

0.5

0.6

0.7

0.8

0.9

1.0
p= 25C2d
t= 1/5

p/d +
t= 0

Discriminative ratio as a function of t= C d/p

Figure 18: Trend of the discriminative ratio ρ(t): ρ is the minimum value of p+/p for the cell to lead
directly to the global optimum. Precisely, we have ρ(t) = ρ(C

√
d
p) =

(
t+

√
5t2−6t+2
2−4t

)2
. Notice the limit

for p/d→ +∞, the sufficient ratio is 1/2, which is to say that a simple majority is enough for the cell
to lead directly to the optimum. On the other end, the case p = 25C2d yields a necessary ratio of 1,
thus only the cells corresponding to the real solution lead to the global optimum.
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P
ro

of
—Step 1: Formulating the cell destination as an eigenvalue problem
Let (y1, y2) ∈ Rd such that its configuration m ∈ {±1}p. With v = z2 − z1, we study the
configuration m∗ of the next step (y∗

1, y
∗
2) = argmin

Y=(y1,y2)∈Rd×Rd

J(Y, πm) (see 4.4.1). By (15):

∀i ∈ J1, pK, m∗
i = sign

(
vT (Bm − Cm)A−1P Ti Piv

)
This proof and the use of RMT relies on the intuition that the above condition depends
essentially on the sign of the eigenvalues of (Bm − Cm)A−1P Ti Pi.

Let i ∈ J1, pK and p+ := # {j ∈ J1, pK | mj = +1}. We will consider the case p+ > ⌊p2⌋, the
case p+ < ⌈p2⌉ can be studied symmetrically by focusing on Cm instead of Bm. (We do not
study the pathological case p+ = p

2 for p even in this theorem).

Now re-write M := (Bm − Cm)A−1 = 2BmA
−1 − I using Bm − Cm = A. Then since A is

real-symmetric, there exists Ω ∈ Od(R) such that ΩTAΩ =: D is diagonal.

We operate this change of variable, first let P̃i := PiΩ, notice D =
1
p

p∑
i=1

P̃ Ti P̃i.

Let B̃m := ΩTBmΩ =
1
p

∑
mj=1

P̃ Ti P̃i and M̃ := ΩTMΩ, we have M̃ = 2B̃mD
−1 − I.

The idea for what follows will be to estimate spM = sp M̃ using a quantitative approxima-
tion D ≈ I/d, the true covariance matrix of P Ti ∼ σ.

Our objective will be to find some conditions under which ∀µ ∈ sp(M), µ > 0. Assume that
this is true, then since ui := P Ti ∈ Sd, we have sp(Muiu

T
i ) = (uTi Mui,0d−1). Then under

our assumption, uTi Mui > 0, have almost-surely vTMP Ti Piv > 0 and thus m∗
i = +1.

—Step 2: Applying Random Matrix Theory

Using Lemma 4.4.3, with probability exceeding 1− 4e−c
√
d, one has:

∀µ ∈ sp(A), µ ∈
[

1
d
±

C
√
dp

]
and ∀µ ∈ sp(Bm),

p

p+µ ∈
[

1
d
±

C√
dp+

]
.

We write D = I/d−Dε, where Dε = diag(ε1, · · · , εd) and |εj | ≤
C
√
dp

.

Then D = 1
d(I − dDε), thus if ∥dDε∥∞ < 1, we have D−1 = d

+∞∑
k=0

dkDk
ε .

Since d
C
√
dp
< 1⇒ ∥dDε∥∞ < 1, we suppose our first condition H1 := p > C2d, i.e. t < 1.

At the first order in dε, one therefore has D−1 = dI + d2Dε. We will omit the error term
in d3ε2, which is negligible compared to the first term in d2ε. For better interpretation, we
perform the computations at the first order in t = C

√
d/p → 0, then start over with the

complete non-asymptotic version of R in Step 4).

Now we can re-write M̃ = 2B̃m(dI + d2Dε) − I and decompose with N := 2dB̃m − I and
R := 2d2B̃mDε. We have λmin(M) ≥ λmin(N) + λmin(R).

Since ∀µ ∈ sp(Bm),
p

p+µ ∈
[

1
d
±

C√
dp+

]
, we have ∀ν ∈ sp(N), ν ∈

[
2
p+

p
− 1± 2C

√
dp+

p

]
,

and then λmin(N) ≥ 2
p+

p
− 1− 2C

√
dp+

p
=: ν0.
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Now for R: since |εj | ≤
C
√
dp
, λmin(R) ≥ λmin

(
−2d2B̃m

C
√
dp

)
= −

2d3/2C
√
p

λmin(Bm).

Finally, λmin(R) ≥ −2C
√
d
p+

p3/2 − 2dC2
√
p+

p3/2 =: −r.

Below Figure 19 is a representation of the intervals that we are studying:

Figure 19: Visualisation of the spectra of the matrices N and M . The likely interval for the
eigenvalues of N is drawn in blue, with the width of interval corresponding to the sampling
error for the empirical covariance matrix Bm. Similarly, when taking into account the added
uncertainty (of width r) due to the empirical covariance matrix A, we obtain in purple the
likely interval for the eigenvalues of M = N +R.

—Step 3: Conditions for sp(M) ⊂ ]0,+∞[

Our objective is to find a set of conditions under which the eigenvalues of M are all strictly
positive, i.e. δ > 0 for δ := ν0 − r, our best lower bound.

We have for x :=
√
p+

p
and t := C

√
d

p
, δ(x) = 2(1− t)x2 − 2(t+ t2)x− 1.

At the first order in t, we have δ(x) > 0 for x > x+ :=
1
√

2
+

2 +
√

2
4 t+O(t2).

This means that at the limit t→ 0, all values of p+

p will allow the desired result λmin(M) > 0,
since the condition x > 1/

√
2 corresponds to p+ > p

2 .

However, at the first order, the condition is stricter:
√
p+

p
>

1
√

2
+

2 +
√

2
4 C

√
d

p

—Step 4: Non-asymptotic condition

Only assuming t < 1, we can do our computations again with R = 2dB̃m

+∞∑
k=1

dkDk
ε , thus

λmin(R) ≤ −2d
t

1− tλmax(B̃m).

Then since λmax(B̃m) ≤
x2

d
+ x

t

d
, we have δ(x) =

2− 4t
1− t x

2 −
2t

1− tx− 1.

Finally, the condition δ(x) > 0 is equivalent to x > x+ :=
t+
√

5t2 − 6t+ 2
2− 4t .

Now since x ∈ ]1/
√

2, 1], in order to have some x satisfying this condition, we need H2 :
x+(t) ≤ 1, which is reached for t ≤ 1/5.
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4.5 Local Optima: general case

In this section we generalise the findings in the previous section to the case L > 2. This amounts to
minimising the following energy:

J(Y, π) =
p∑
i=1

λi
∑

(k,l)∈J1,LK2

π
(i)
k,l∥Pizk − Piyl∥

2
2. (16)

Where Y ∈ RL×d is the measure positions and π ∈ UpL is a list of valid OT matrices with uniform
marginals.

Theorem 4.5.1 — Cell structure for any L > 2

Let Y = (y1, · · · yL)T a current coupling position.

For each i ∈ J1, pK, the associated optimal transport matrix πi is a normalised permutation
matrix Pσi/L (recall (Pσi)k,l = 1(σi(k) = l)), where σi is determined by:

σi ∈ argmin
σ∈SL

L∑
k=1
∥Pizk − Piyσ(k)∥22. (17)

Note that if there are multiple solutions, any convex combination of them is also optimal.

Assuming that Y is such that each of the σi are unique, we define the matching configuration
of Y by the list of its permutations: m = (σ1, · · · , σp) ∈ Sp

L.

Like the 2-point case, the mapping
{

RL×d −→ Sp
L

Y 7−→ m(Y ) is constant by parts where the regions

of RL×d with the same configuration are determined by a set of linear constraints: given m =
(σ1, · · · , σp) ∈ Sp

L, the associated set of Y positions with configuration m is solution to the set
of linear inequations:

∀i ∈ J1, pK, ∀σ ∈ SL \ {σi},
L∑
k=1

P Ti Pizk · yσi(k) >
L∑
k=1

P Ti Pizk · yσ(k) (18)

P
ro

of

In order to prove (17), we apply the Birkhoff-Von-Neumann theorem, which states the
solutions (π∗

1, · · · , π∗
p) minimising the linear cost π 7→ J(Y, π) over valid OT matrices are

convex combinations of (normalised) permutation matrices.

Let i ∈ J1, pK. One may write π∗
i =

∑
σ∈SL

aσPσ/L, with a ∈ ΣL!.

Then one may re-write the i-th term in the energy J as
λi

L

∑
σ∈SL

aσ

L∑
k=1
∥Pizk − Piyσ(k)∥22,

hence (17).

Note that if a minimiser of (17) is not unique, then any a ∈ ΣL! whose support corresponds
to the minimisers defines an optimal OT matrix π∗

i =
∑
σ∈SL

aσPσ/L.

Finally, (18) is obtained by re-writing (17) by expanding the square and considering the
case of a unique minimiser.

Similarly to the two-point case, we can predict the next BCD operation based on the measure positions’
configuration:
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Theorem 4.5.2 — Cell movement

Consider Y ∈ RL×d of configuration m = (σ1, · · ·σp), and let πm the associated OT matrices.

The next optimal positions Y ∗ ∈ argmin
(y1,··· ,yL)∈RL×d

J(Y, πm) are:

y∗
k = A−1

( p∑
i=1

P Ti Pizσ−1
i (k)

)
(19)

The proof uses the same computations as 4.4.2, deriving the gradients of sums of quadratic forms in
the yk.

Unfortunately, unlike the 2-point case, there is no simplification that can be done, and the computation
of the next configuration m(Y ∗) relies on computing p OT problems: one for each permutation σi in
the configuration.
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5 The Blind Generalised Wasserstein Barycentre Problem

5.1 Problem Description

We now consider a generalised version of the GWB problem:

argmin
γ∈P2(Rd)

Pi∈Mdi,d(R)

p∑
i=1

λiW2
2(νi, Pi#γ) (BGWB)

This generalisation consists in adding a degree of freedom: the linear maps Pi, which we had consid-
ered fixed or random beforehand. We called this new problem "Blind" since the optimisation has to
determine itself a possible correspondence between a coupling measure and the input measures.

5.2 Theoretical Properties of BGWB

5.2.1 Non-Convexity

First note that the (BGWB) energy,

J(Y, (πi), (Pi)) =
p∑
i=1

λi
∑

(k,l)∈J1,KiK×J1,LK

∥x(i)
k − Piyl∥

2
2π

(i)
k,l (J)

is separately convex (even quadratic or linear) in Y, pi and Pi.

In order to gauge the computational difficulty of the problem, we shall use the closed form for the Pi
(21) and study the partial problem with γ fixed:

min
P∈Mh,d(R)

W2
2(ν, P#γ) = min

P∈Mh,d(R)
min

π∈Π(a,b)
M · π = min

π∈Π(a,b)
min

P∈Mh,d(R)
M · π, (20)

where Mk,l = ∥xk − Pyl∥22.

Then for π ∈ Π(a, b), by (21), P ∗ := argmin
P∈Mh,d(R)

= XTπD, with D := Y

(
L∑
l=1

blyly
T
l

)−1

∈ML,d(R).

The associated OT matrix is Mk,l = ∥xk − P ∗yl∥22 = ∥xk −XTπDyl∥22, and (20) reads:

min
π∈Π(a,b)

∑
(k,l)∈J1,KiK×J1,LK

∥xk −XTπDyl∥22πk,l,

which is a cubic problem with linear constraints, thus (potentially highly) non-convex in general.
Further note that this numerically difficult problem is rendered even more complex by the subsequent
optimisation in the positions Y .

A classical way of solving this cubic problem would be to alternate optimisation on π and a surrogate
variable π′:

min
π,π′∈Π(a,b)

∑
(k,l)∈J1,KiK×J1,LK

∥xk −XTπ′Dyl∥22πk,l,

yielding a linear program in π and a quadratic program in π′.
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5.2.2 Invariants

In broad terms, the (BGWB) energy is invariant to any invertible linear transformation in the coupling
space.

For any invertible R ∈ Md(R), we have J(Y RT , (πi), (PiR−1)) = J(Y, (πi), (Pi)). Essentially, the
energy value remains the same if the points yl and the maps Pi are transformed reciprocally.

This is proven by PiR−1Ryl = Piyl, or in a Wasserstein space viewpoint by the equally simple remark:
W 2

2 (ν, P#γ) = W 2
2 (ν, (PRT )#(R−1#γ)).

It is up to debate whether breaking this invariant would be beneficial in practice. One way of going
about this could be to impose P1 to be an augmented identity matrix, and only optimise on P2, · · · , Pp.

5.3 Extending the Gradient Descent Solvers

In order to adapt our Gradient Descent-based methods for (GWB) to (BGWB) (Algorithm 4 and
Algorithm 5), we only need to compute the gradients in the linear maps Pi.

5.3.1 Gradient in P

Using the same notations as §3.2.1:

We use mixed convention, where for (α, β) ∈ J1, diK× J1, dK,
∂J

∂M
and

∂M

∂Pα,β
have the shape (K,L).

Using the chain rule3 we can compute
∂J

∂Pα,β
= Tr

[ ∂J
∂M

]T
∂M

∂Pα,β

 , where:

• We have computed
∂J

∂M
= π∗

• Recall Mk,l = ∥xk − Pyl∥22. We compute
∂M

∂Pα,β
by computing4 ∂Mk,l

∂P
= −2xkyTl + 2PylyTl

As discussed earlier with the theoretical properties of (BGWB), we normalise the linear maps Pi:
at each GD iteration, we project each row of each Pi onto the L2 sphere Sd, which we will see as
projecting onto the set of di × d matrices with normalised rows Rdi,d.

Similarly to the positions yl in the (GWB) GD discussion, we apply of Shapiro’s Theorem (3.2.1) on
the primal problem, allowing us to plug-in the optimal value of yl which yields a sub-gradient in P .

5.3.2 GD for BGWB Algorithm

We present our GD solver for the (BGWB) problem. Note that technically, the method is Projected
Alternated Gradient Descent.

3See The Matrix Cookbook [16], §2.8.1 (126)
4See The Matrix Cookbook [16], §2.4.1 (70) and §2.4.2 (77)
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Algorithm 8: (BGWB) resolution with Gradient Descent

Data: Input measure points (Xi)i∈J1,pK ∈
p∏
i=1
MKi,di(R) and weights (ai)i∈J1,pK ∈

p∏
i=1

ΣKi

Number of barycentre points L, barycentric coefficients λ ∈ Σp, precision ε,
iterations N , learning rate η, l.r. decay ρ.

Result: Barycentre positions Y ∈ML,d(R), barycentre weights b ∈ ΣL,

and linear maps (Pi)i∈J1,pK ∈
p∏
i=1

Rdi .

1 Initialisation: Draw Y ∈ML,d(R), b ∈ ΣL, (Pi)i∈J1,pK ∈
p∏
i=1

Rdi and let J0 := +∞;

2 for t ∈ J1, NK do
3 for i ∈ J1, pK do
4 Compute J (i) = min

πi∈Π(ai,b)
Mi · πi where M (i)

k,l = ∥x(i)
k − Piyl∥22;

5 end

6 Compute the loss Jt =
p∑
i=1

λiJ
(i) and its gradients w.r.t. Y, b, Pi;

7 for i ∈ J1, pK do

8 Step the linear map Pi : Pi ← ΠRdi,d

(
Pi − ρtη

∂Jt

∂Pi

)
;

9 end

10 Step the positions Y : Y ← Y − ρtη
∂Jt

∂Y
;

11 Step the weights b : b← ΠΣL

(
b− ρtη

∂Jt

∂b

)
;

12 if Jt−1 − Jt < ε then
13 Declare convergence and terminate.
14 end
15 end

5.3.3 SGD for BGWB Algorithm

Below is a stochastic variant of the GD solver for BGWB (Algorithm 8), which is technically Stochastic
Projected Alternated Gradient Descent.
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Algorithm 9: (BGWB) resolution with Stochastic Gradient Descent

Data: Input measure points (Xi)i∈J1,pK ∈
p∏
i=1
MKi,di(R) and weights (ai)i∈J1,pK ∈

p∏
i=1

ΣKi

Number of barycentre points L, barycentric coefficients λ ∈ Σp, precision ε,
iterations N , learning rate η and l.r. decay ρ.

Result: Barycentre positions Y ∈ML,d(R), barycentre weights b ∈ ΣL,

and linear maps (Pi)i∈J1,pK ∈
p∏
i=1

Rdi .

1 Initialisation: Draw Y ∈ML,d(R), b ∈ ΣL, (Pi)i∈J1,pK ∈
p∏
i=1

Rdi and let J0 := +∞;

2 for t ∈ J1, NK do
3 for _ ∈ J1, pK do
4 Draw i ∼ D;
5 Compute J (i) = min

πi∈Π(ai,b)
Mi · πi where M (i)

k,l = ∥x(i)
k − Piyl∥22;

6 end

7 Compute the loss Jt =
p∑
i=1

J (i) and its gradients w.r.t. Y, b, (Pi)i∈J1,pK;

8 for i ∈ J1, pK do

9 Step the linear map Pi : Pi ← ΠRdi,d

(
Pi − ρtη

∂Jt

∂Pi

)
;

10 end

11 Step the positions Y : Y ← Y − ρtη
∂Jt

∂Y
;

12 Step the weights b : b← ΠΣL

(
b− ρtη

∂Jt

∂b

)
;

13 if Jt−1 − Jt < ε then
14 Declare convergence and terminate.
15 end
16 end
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5.3.4 Visual Experiments

First, notice (see Figure 20) that with the parameters b, P let constant, the GD solver on the (GWB)
problem finds a similar solution to free_support_barycenter on (GWB’), since the two problems
are equivalent:

Figure 20: GWB resolution using GD on a toy dataset (fixed maps (Pi)).

And below (Figure 21) is the result of the GD solution for the (BGWB) problem (thus also optimising
the linear maps Pi):

Figure 21: (BGWB) resolution using GD on a toy dataset.

5.4 BCD resolution

5.4.1 Closed form in P

Using the same notations as §3.3:

The structure of the problem makes it sufficient to find a closed form solution of the following problem:

argmin
P∈Md′,d(R)

∑
(k,l)∈J1,KK×J1,LK

∥xk − Pyl∥22πk,l.

Note that the energy (denoted as J ′) above is convex and quadratic in P . We compute:

∇J ′(P ) = 2
∑
k,l

πk,l(PylyTl − xkyTl ), yielding an optimality condition PB = C

where B :=
K∑
k=1

L∑
l=1

πk,lyly
T
l =

L∑
l=1

blyly
T
l and C :=

K∑
k=1

L∑
l=1

πk,lxky
T
l .

Assuming the invertibility of B we have a unique solution:

P ∗ =
(

K∑
k=1

L∑
l=1

πk,lxky
T
l

)(
L∑
l=1

blyly
T
l

)−1

. (21)
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Since the πk,l ≥ 0, B is symmetric positive semi-definite. Then B is invertible iff Span(yl)l∈J1,LK = Rd,
which is a weak assumption in practice.

Note that unlike GD, we cannot enforce normalisation on the Pi apart from their initialisation.

For the matrix form, we use C = XTπY and B = Y T bY .

5.4.2 BCD for BGWB Algorithm

Algorithm 10: (BGWB) resolution with Block-Coordinate Descent

Data: Input measure points (Xi)i∈J1,pK ∈
p∏
i=1
MKi,di(R) and weights (ai)i∈J1,pK ∈

p∏
i=1

ΣKi

Barycentre weights b ∈ ΣL, barycentric coefficients λ ∈ Σp, precision ε, iterations N .

Result: Barycentre positions Y ∈ML,d(R), and linear maps (Pi)i∈J1,pK ∈
p∏
i=1

Rdi .

1 Initialisation: Draw Y ∈ML,d(R), (Pi)i∈J1,pK ∈
p∏
i=1

Rdi and let J0 := +∞;

2 for t ∈ J1, NK do
3 for i ∈ J1, pK do
4 Compute the OT distance matrix M (i)

k,l = ∥x(i)
k − Piyl∥22;

5 Compute the OT map πi by solving min
πi∈Π(ai,b)

Mi · πi;

6 end
7 for l ∈ J1, LK do

8 Update yl: compute yl =
( p∑
i=1

λiblP
T
i Pi

)−1( p∑
i=1

λi
(
π

(i)
·,l

)T
XiPi

)
;

9 end
10 for i ∈ J1, pK do
11 Update Pi: compute Pi =

(
XTπiY

) (
Y T bY

)−1
;

12 end

13 Compute the energy Jt =
p∑
i=1

λiMi · πi;

14 if Jt−1 − Jt < ε then
15 Declare convergence and terminate.
16 end
17 end
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6 Perspectives and Conclusion

6.1 Perspectives

There are two main axes of progression for this project:

• First of all, the work on the reconstruction problem and its ties to the Sliced Wasserstein distance
still has more potential. Substantial work has been done in order to attempt to compute the
law of cell movement (i.e., starting from a configuration m, what is the probability of the
next configuration being m′?). This question is still unanswered due to random matrix theory
technical obstacles, but computing the aforementioned law would allow a significantly better
understading of local optima. A crucial question to answer is the existence of local optima
for the Sliced Wasserstein distance (with p projections and at the limits p → +∞, which our
Reconstruction Problem analysis is starting to shed light on.

• The second perspective is the continutation of the Blind version of GWB: several questions
remain. What constraints should we impose upon the Pi, and is it beneficial to drop the invari-
ants? Can we derive a dual and a better understanding of the solutions? An application that
we considered and couldn’t put together in time was Domain Adaptation: the BGWB problem
could be a way of using non-labelled data, by learning a heterogenous mapping that preserves
labels.

6.2 Conclusion

In this internship we put together effective solvers for the (Blind) Generalised Wasserstein Barycentre
problem. These numerical solutions are available and well documented on our repository, and are on
their way to the open source module POT.

On the theoretical side, we developed an extensive understading of the set of solutions of a reconstruc-
tion problem, which is a restriction of the GWB problem. Furthermore, these insights have led to a
unique approach of studying the local optima of Sliced Wassersttein distances, using Random Matrix
Theory.

During my stay at the laboratoire MAP5 I had the pleasure of working with Julie Delon and Rémy
Flamary who had the kindness of sharing valuable advice on my work and my career as a future PhD
student. Beyond the abundant academic help that they have generously provided, they allowed me
grow further as a human being and an aspiring researcher. At MAP5 I also met with the doctoral
students and the other permanent researchers, and I am overjoyed to have been welcomed so warmly
into what will be my home for the next three years. I am eager to continue this work and much more
during my PhD at MAP5, under the guidance of Julie Delon, Agnès Desolneux and Rémy Flamary.
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